論文の概要: Pay Attention to What Matters
- arxiv url: http://arxiv.org/abs/2409.19001v1
- Date: Thu, 19 Sep 2024 15:26:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 05:00:47.410691
- Title: Pay Attention to What Matters
- Title(参考訳): 重要なことへの注意を払う
- Authors: Pedro Luiz Silva, Antonio de Domenico, Ali Maatouk, Fadhel Ayed,
- Abstract要約: 命令トークンの注意点を機械的に増加させる,GUIDE と呼ばれるシンプルで効果的な手法を提案する。
この操作を支援するために,ユーザの指示がトランス層を通してどのように伝播するかを強調する新しい指標であるEmpfectを提案する。
以上の結果から,GUIDEは命令の精度を29.4%から60.4%に向上し,自然刺激の代替品や100万トークンのスーパービジョンファインチューニングよりも優れていた。
- 参考スコア(独自算出の注目度): 10.89388229404015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the remarkable success of Large Language Models (LLMs), they still exhibit a limited capability to align their outputs to the user instructions. In this work, we introduce a simple and effective method, which we name GUIDE, that mechanistically increases attention scores in instruction tokens. To support this operation, we present Influence, a novel metric that highlights how the user's instructions propagate through the transformer layers and impact the LLM output. Our results show that GUIDE improves the accuracy of following instructions 29.4 % to 60.4%, outperforming natural prompting alternatives and Supervised Fine-Tuning up to 1M tokens.
- Abstract(参考訳): LLM(Large Language Models)の成功にもかかわらず、出力をユーザ指示に合わせる能力は限られている。
本稿では,命令トークンの注意点を機械的に増加させるGUIDEという,シンプルで効果的な手法を提案する。
この操作を支援するために,ユーザの指示がトランスフォーマー層を通して伝播し,LLM出力に影響を与えることを示す新しい指標であるEmpfectを提案する。
以上の結果から,GUIDEは命令の精度を29.4%から60.4%に向上し,自然刺激の代替品や100万トークンのスーパーバイザード・ファイン・チューニングよりも優れていた。
関連論文リスト
- TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - Show, Don't Tell: Aligning Language Models with Demonstrated Feedback [54.10302745921713]
Demonstration ITerated Task Optimization (DITTO)は、言語モデルの出力とユーザの実証された振る舞いを直接調整する。
我々は,DITTOがニュース記事やメール,ブログ記事などのドメイン間できめ細かいスタイルやタスクアライメントを学習する能力を評価する。
論文 参考訳(メタデータ) (2024-06-02T23:13:56Z) - Instruction Tuning With Loss Over Instructions [42.9106826952674]
インストラクション・モデリング(IM)は、出力部のみではなく、インストラクションとプロンプト部に損失関数を適用してLMを訓練する。
多くのシナリオにおいて、IMはNLPタスクとオープン・エンド・ジェネレーション・ベンチマークの両方でのLM性能を効果的に改善できることを示す。
注目すべきは、最も有利な場合、IMはAlpacaEval 1.0のモデルパフォーマンスを100%以上向上させることだ。
論文 参考訳(メタデータ) (2024-05-23T10:12:03Z) - RoCoIns: Enhancing Robustness of Large Language Models through
Code-Style Instructions [43.19966425619236]
より構造的であいまいなコードスタイルの命令を使用して、典型的には自然言語命令を置き換える。
そこで本研究では,クリーンサンプルと逆サンプルの両方を用いて,コンテキスト内デモを構成する新しい手法を提案する。
8つのロバスト性データセットの実験により、我々の手法は自然言語命令によるLLMよりも一貫して優れていた。
論文 参考訳(メタデータ) (2024-02-26T09:30:55Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
そこで本研究では,本質的な変化に着目した事前学習モデルの調整方法について検討する。
次に、事前訓練されたモデルと命令調整されたモデルから導かれた説明を比較することで、命令チューニングの影響について研究する。
この結果から,指導指導の3つの重要な影響が明らかになった。
論文 参考訳(メタデータ) (2023-09-30T21:16:05Z) - Evaluating the Instruction-Following Robustness of Large Language Models
to Prompt Injection [70.28425745910711]
LLM(Large Language Models)は、命令追従に非常に熟練した言語である。
この能力は、迅速なインジェクション攻撃のリスクをもたらす。
このような攻撃に対する命令追従LDMの堅牢性を評価する。
論文 参考訳(メタデータ) (2023-08-17T06:21:50Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z) - FCM: Forgetful Causal Masking Makes Causal Language Models Better
Zero-Shot Learners [139.6321017962092]
本稿では,計算コストを増大させることなく,大規模言語モデルの性能を大幅に向上させる簡単な手法を提案する。
我々のキーとなる観察は、ランダムに選択された過去のトークンをマスクアウトした次のトークン予測タスクを実行することで、学習された表現の品質を向上させることができることである。
実験結果から,本手法は多種多様なタスクに対して,PALMのゼロおよび少数ショット性能も向上することが示された。
論文 参考訳(メタデータ) (2022-10-24T17:46:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。