Rephrase and Contrast: Fine-Tuning Language Models for Enhanced Understanding of Communication and Computer Networks
- URL: http://arxiv.org/abs/2409.19007v2
- Date: Sat, 19 Oct 2024 09:14:42 GMT
- Title: Rephrase and Contrast: Fine-Tuning Language Models for Enhanced Understanding of Communication and Computer Networks
- Authors: Liujianfu Wang, Yuyang Du, Jingqi Lin, Kexin Chen, Soung Chang Liew,
- Abstract summary: This paper introduces our Rephrase and Contrast (RaC) framework, an efficient fine-tuning framework.
RaC enhances LLMs' comprehension and critical thinking abilities by incorporating question reformulation and contrastive analysis.
To efficiently construct the dataset for RaC fine-tuning, we develop a GPT-assisted data mining method for generating high-quality question-answer pairs.
- Score: 13.829525575305206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are being widely researched across various disciplines, with significant recent efforts focusing on adapting LLMs for understanding of how communication networks operate. However, over-reliance on prompting techniques hinders the full exploitation of the generalization ability of these models, and the lack of efficient fine-tuning methods prevents the full realization of lightweight LLMs' potential. This paper addresses these challenges by introducing our Rephrase and Contrast (RaC) framework, an efficient fine-tuning framework. RaC enhances LLMs' comprehension and critical thinking abilities by incorporating question reformulation and contrastive analysis of correct and incorrect answers during the fine-tuning process. Experimental results demonstrate a 63.73% accuracy improvement over the foundational model when tested on a comprehensive networking problem set. Moreover, to efficiently construct the dataset for RaC fine-tuning, we develop a GPT-assisted data mining method for generating high-quality question-answer (QA) pairs; furthermore, we introduce ChoiceBoost, a data augmentation technique that expands dataset size while reducing answer-order bias. Apart from these technical innovations, we contribute to the networking community by open-sourcing valuable research resources, including: 1) the fine-tuned networking model referred to as RaC-Net, 2) the training dataset used for fine-tuning the model, 3) three testing problem sets of different difficulties to serve as benchmarks for future research, and 4) code associated with the above resources.
Related papers
- SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Leveraging Fine-Tuned Retrieval-Augmented Generation with Long-Context Support: For 3GPP Standards [4.334100270812517]
Large language models (LLMs) struggle with technical standards in telecommunications.
We propose a fine-tuned retrieval-augmented generation (RAG) system based on the Phi-2 small language model (SLM)
Our experiments demonstrate substantial improvements over existing question-answering approaches in the telecom domain.
arXiv Detail & Related papers (2024-08-21T17:00:05Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - A Closer Look at the Limitations of Instruction Tuning [52.587607091917214]
We show that Instruction Tuning (IT) fails to enhance knowledge or skills in large language models (LLMs)
We also show that popular methods to improve IT do not lead to performance improvements over a simple LoRA fine-tuned model.
Our findings reveal that responses generated solely from pre-trained knowledge consistently outperform responses by models that learn any form of new knowledge from IT on open-source datasets.
arXiv Detail & Related papers (2024-02-03T04:45:25Z) - Enhancing Large Language Model Performance To Answer Questions and
Extract Information More Accurately [2.1715455600756646]
Large Language Models (LLMs) generate responses to questions.
Their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions.
To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models.
arXiv Detail & Related papers (2024-01-27T00:18:07Z) - Few-shot learning for automated content analysis: Efficient coding of
arguments and claims in the debate on arms deliveries to Ukraine [0.9576975587953563]
Pre-trained language models (PLM) based on transformer neural networks offer great opportunities to improve automatic content analysis in communication science.
Three characteristics so far impeded the widespread adoption of the methods in the applying disciplines: the dominance of English language models in NLP research, the necessary computing resources, and the effort required to produce training data to fine-tune PLMs.
We test our approach on a realistic use case from communication science to automatically detect claims and arguments together with their stance in the German news debate on arms deliveries to Ukraine.
arXiv Detail & Related papers (2023-12-28T11:39:08Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.