Leveraging Fine-Tuned Retrieval-Augmented Generation with Long-Context Support: For 3GPP Standards
- URL: http://arxiv.org/abs/2408.11775v1
- Date: Wed, 21 Aug 2024 17:00:05 GMT
- Title: Leveraging Fine-Tuned Retrieval-Augmented Generation with Long-Context Support: For 3GPP Standards
- Authors: Omar Erak, Nouf Alabbasi, Omar Alhussein, Ismail Lotfi, Amr Hussein, Sami Muhaidat, Merouane Debbah,
- Abstract summary: Large language models (LLMs) struggle with technical standards in telecommunications.
We propose a fine-tuned retrieval-augmented generation (RAG) system based on the Phi-2 small language model (SLM)
Our experiments demonstrate substantial improvements over existing question-answering approaches in the telecom domain.
- Score: 4.334100270812517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies show that large language models (LLMs) struggle with technical standards in telecommunications. We propose a fine-tuned retrieval-augmented generation (RAG) system based on the Phi-2 small language model (SLM) to serve as an oracle for communication networks. Our developed system leverages forward-looking semantic chunking to adaptively determine parsing breakpoints based on embedding similarity, enabling effective processing of diverse document formats. To handle the challenge of multiple similar contexts in technical standards, we employ a re-ranking algorithm to prioritize the most relevant retrieved chunks. Recognizing the limitations of Phi-2's small context window, we implement a recent technique, namely SelfExtend, to expand the context window during inference, which not only boosts the performance but also can accommodate a wider range of user queries and design requirements from customers to specialized technicians. For fine-tuning, we utilize the low-rank adaptation (LoRA) technique to enhance computational efficiency during training and enable effective fine-tuning on small datasets. Our comprehensive experiments demonstrate substantial improvements over existing question-answering approaches in the telecom domain, achieving performance that exceeds larger language models such as GPT-4 (which is about 880 times larger in size). This work presents a novel approach to leveraging SLMs for communication networks, offering a balance of efficiency and performance. This work can serve as a foundation towards agentic language models for networks.
Related papers
- TeleOracle: Fine-Tuned Retrieval-Augmented Generation with Long-Context Support for Network [4.551436852242372]
We present TeleOracle, a telecom-specialized retrieval-augmented generation (RAG) system built on the Phi-2 small language model (SLM)
To improve context retrieval, TeleOracle employs a two-stage retriever that incorporates semantic chunking and hybrid keyword and semantic search.
A thorough analysis of the model's performance indicates that our RAG framework is effective in aligning Phi-2 to the telecom domain in a downstream question and answer (QnA) task, achieving a 30% improvement in accuracy over the base Phi-2 model.
arXiv Detail & Related papers (2024-11-04T21:12:08Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Rephrase and Contrast: Fine-Tuning Language Models for Enhanced Understanding of Communication and Computer Networks [13.829525575305206]
This paper introduces our Rephrase and Contrast (RaC) framework, an efficient fine-tuning framework.
RaC enhances LLMs' comprehension and critical thinking abilities by incorporating question reformulation and contrastive analysis.
To efficiently construct the dataset for RaC fine-tuning, we develop a GPT-assisted data mining method for generating high-quality question-answer pairs.
arXiv Detail & Related papers (2024-09-21T16:04:43Z) - Large Language Models for Power Scheduling: A User-Centric Approach [6.335540414370735]
We introduce a novel architecture for resource scheduling problems by converting an arbitrary user's voice request (VRQ) into a resource allocation vector.
Specifically, we design an LLM intent recognition agent to translate the request into an optimization problem (OP), an LLM OP parameter identification agent, and an OP solving agent.
arXiv Detail & Related papers (2024-06-29T15:47:28Z) - SpaFL: Communication-Efficient Federated Learning with Sparse Models and Low computational Overhead [75.87007729801304]
SpaFL: a communication-efficient FL framework is proposed to optimize sparse model structures with low computational overhead.
Experiments show that SpaFL improves accuracy while requiring much less communication and computing resources compared to sparse baselines.
arXiv Detail & Related papers (2024-06-01T13:10:35Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - Refining Joint Text and Source Code Embeddings for Retrieval Task with Parameter-Efficient Fine-Tuning [0.0]
We propose a fine-tuning frame-work that leverages.
Efficient Fine-Tuning (PEFT) techniques.
We demonstrate that the proposed fine-tuning framework has the potential to improve code-text retrieval performance by tuning only 0.4% parameters at most.
arXiv Detail & Related papers (2024-05-07T08:50:25Z) - Structural Pruning of Pre-trained Language Models via Neural Architecture Search [7.833790713816726]
Pre-trained language models (PLM) mark the state-of-the-art for natural language understanding task when fine-tuned on labeled data.
This paper explores neural architecture search (NAS) for structural pruning to find sub-parts of the fine-tuned network that optimally trade-off efficiency.
arXiv Detail & Related papers (2024-05-03T17:34:57Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.