論文の概要: RAGProbe: An Automated Approach for Evaluating RAG Applications
- arxiv url: http://arxiv.org/abs/2409.19019v1
- Date: Tue, 24 Sep 2024 23:33:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 04:50:50.859256
- Title: RAGProbe: An Automated Approach for Evaluating RAG Applications
- Title(参考訳): RAGProbe: RAGアプリケーション評価のための自動アプローチ
- Authors: Shangeetha Sivasothy, Scott Barnett, Stefanus Kurniawan, Zafaryab Rasool, Rajesh Vasa,
- Abstract要約: Retrieval Augmented Generation (RAG)は、ジェネレーティブAIアプリケーションを構築する際にますます利用されている。
本稿では,RAGパイプラインの故障を誘発する質問応答ペアのバリエーションを生成する手法を提案する。
- 参考スコア(独自算出の注目度): 1.38012307221604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval Augmented Generation (RAG) is increasingly being used when building Generative AI applications. Evaluating these applications and RAG pipelines is mostly done manually, via a trial and error process. Automating evaluation of RAG pipelines requires overcoming challenges such as context misunderstanding, wrong format, incorrect specificity, and missing content. Prior works therefore focused on improving evaluation metrics as well as enhancing components within the pipeline using available question and answer datasets. However, they have not focused on 1) providing a schema for capturing different types of question-answer pairs or 2) creating a set of templates for generating question-answer pairs that can support automation of RAG pipeline evaluation. In this paper, we present a technique for generating variations in question-answer pairs to trigger failures in RAG pipelines. We validate 5 open-source RAG pipelines using 3 datasets. Our approach revealed the highest failure rates when prompts combine multiple questions: 91% for questions when spanning multiple documents and 78% for questions from a single document; indicating a need for developers to prioritise handling these combined questions. 60% failure rate was observed in academic domain dataset and 53% and 62% failure rates were observed in open-domain datasets. Our automated approach outperforms the existing state-of-the-art methods, by increasing the failure rate by 51% on average per dataset. Our work presents an automated approach for continuously monitoring the health of RAG pipelines, which can be integrated into existing CI/CD pipelines, allowing for improved quality.
- Abstract(参考訳): Retrieval Augmented Generation (RAG)は、ジェネレーティブAIアプリケーションを構築する際にますます利用されている。
これらのアプリケーションとRAGパイプラインの評価は、主に試行錯誤プロセスを通じて手作業で行われる。
RAGパイプラインの評価を自動化するには、コンテキスト誤解、誤ったフォーマット、不正確な特異性、欠落したコンテンツといった課題を克服する必要がある。
そのため、以前の作業では、評価指標の改善と、利用可能な質問と回答のデータセットを使用したパイプライン内のコンポーネントの強化に重点を置いていた。
しかし、彼らは焦点を当てていない。
1)異なる種類の質問応答ペアをキャプチャするためのスキーマを提供するか
2) RAGパイプライン評価の自動化を支援するための質問応答ペアを生成するテンプレートセットを作成する。
本稿では,RAGパイプラインの故障を誘発する質問応答対の変動を生成する手法を提案する。
3つのデータセットを使用して5つのオープンソースのRAGパイプラインを検証する。
このアプローチでは、複数のドキュメントにまたがる場合の質問の91%、単一のドキュメントからの質問の78%、組み合わせた質問に優先順位を付ける必要があることなど、複数の質問を組み合わせれば最も高い失敗率を示しました。
学術ドメインデータセットでは60%の障害率,オープンドメインデータセットでは53%と62%の障害率が観察された。
私たちの自動アプローチは、データセット当たり平均で51%の障害率を向上することで、既存の最先端手法よりも優れています。
我々の研究は、RAGパイプラインの健全性を継続的に監視するための自動化されたアプローチを提示し、既存のCI/CDパイプラインに統合することで、品質の向上を可能にします。
関連論文リスト
- Toward Optimal Search and Retrieval for RAG [39.69494982983534]
Retrieval-augmented Generation (RAG)は、Large Language Models (LLM)に関連するメモリ関連の課題に対処するための有望な方法である。
ここでは、質問回答(QA)などの共通タスクに対して、レトリバーをRAGパイプラインに最適化する方法を理解することを目的としている。
論文 参考訳(メタデータ) (2024-11-11T22:06:51Z) - RAG-ConfusionQA: A Benchmark for Evaluating LLMs on Confusing Questions [52.33835101586687]
会話AIエージェントはRetrieval Augmented Generation(RAG)を使用して、ユーザからの問い合わせに対して検証可能なドキュメント地上応答を提供する。
本稿では,与えられた文書コーパスから,文脈に乱れた多様な質問を効率的に生成する,新しい合成データ生成手法を提案する。
論文 参考訳(メタデータ) (2024-10-18T16:11:29Z) - REFINE on Scarce Data: Retrieval Enhancement through Fine-Tuning via Model Fusion of Embedding Models [14.023953508288628]
検索拡張生成(RAG)パイプラインは、質問応答(QA)などのタスクで一般的に使用される。
本稿では,利用可能な文書から合成データを生成する新しい手法であるREFINEを提案する。
論文 参考訳(メタデータ) (2024-10-16T08:43:39Z) - Toward General Instruction-Following Alignment for Retrieval-Augmented Generation [63.611024451010316]
Retrieval-Augmented Generation (RAG) システムの効果的な適用には、自然な指示に従うことが不可欠である。
RAGシステムにおける命令追従アライメントのための,最初の自動化,拡張性,検証可能な合成パイプラインであるVIF-RAGを提案する。
論文 参考訳(メタデータ) (2024-10-12T16:30:51Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
大きな言語モデル(LLM)は優れた能力を示すが、不正確なあるいは幻覚反応を引き起こす傾向がある。
この制限は、膨大な事前トレーニングデータセットに依存することに起因するため、目に見えないシナリオでのエラーの影響を受けやすい。
Retrieval-Augmented Generation (RAG) は、外部の関連文書を応答生成プロセスに組み込むことによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-03-31T08:58:54Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
このような課題に対処するためのパラダイムとして,レトリーバル拡張生成(RAG)が登場している。
RAGは情報検索プロセスを導入し、利用可能なデータストアから関連オブジェクトを検索することで生成プロセスを強化する。
本稿では,RAG手法をAIGCシナリオに統合する既存の取り組みを概観的にレビューする。
論文 参考訳(メタデータ) (2024-02-29T18:59:01Z) - RAG-Fusion: a New Take on Retrieval-Augmented Generation [0.0]
Infineonは、エンジニア、アカウントマネージャ、顧客が迅速に製品情報を取得する必要性を特定している。
この研究は人工知能(AI)と自然言語処理(NLP)の応用において大きな進歩をみせている。
論文 参考訳(メタデータ) (2024-01-31T22:06:07Z) - Q-DETR: An Efficient Low-Bit Quantized Detection Transformer [50.00784028552792]
Q-DETRのボトルネックは、我々の経験的分析によるクエリ情報の歪みから生じる。
情報ボトルネック(IB)の原理をQ-DETRの学習に一般化することで導出できる2レベル最適化問題としてDRDを定式化する。
本研究では,教師情報を蒸留所要の機能に効果的に転送し,条件情報エントロピーを最小化する,フォアグラウンド対応クエリマッチング手法を提案する。
論文 参考訳(メタデータ) (2023-04-01T08:05:14Z) - Relation-Guided Pre-Training for Open-Domain Question Answering [67.86958978322188]
複雑なオープンドメイン問題を解決するためのRGPT-QA(Relation-Guided Pre-Training)フレームワークを提案する。
RGPT-QAは, 自然質問, TriviaQA, WebQuestionsにおいて, Exact Matchの精度が2.2%, 2.4%, 6.3%向上したことを示す。
論文 参考訳(メタデータ) (2021-09-21T17:59:31Z) - Generating Diverse and Consistent QA pairs from Contexts with
Information-Maximizing Hierarchical Conditional VAEs [62.71505254770827]
非構造化テキストを文脈として与えられたQAペアを生成するための条件付き変分オートエンコーダ(HCVAE)を提案する。
我々のモデルは、トレーニングにわずかなデータしか使わず、両方のタスクの全てのベースラインに対して印象的なパフォーマンス向上が得られる。
論文 参考訳(メタデータ) (2020-05-28T08:26:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。