論文の概要: Can LLMs Really Learn to Translate a Low-Resource Language from One Grammar Book?
- arxiv url: http://arxiv.org/abs/2409.19151v2
- Date: Thu, 24 Apr 2025 09:40:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.050418
- Title: Can LLMs Really Learn to Translate a Low-Resource Language from One Grammar Book?
- Title(参考訳): LLMは1冊の文法書から低リソースの言語を本当に翻訳できるか?
- Authors: Seth Aycock, David Stap, Di Wu, Christof Monz, Khalil Sima'an,
- Abstract要約: この翻訳能力の源泉について検討し,本書の並列例からほぼすべての改良点が得られた。
ネパール語とグアラニ語でも同様の結果が得られ、低リソース言語が見られた。
我々は,XLR言語におけるタスク適合データの重要性を強調した。
- 参考スコア(独自算出の注目度): 6.905647501099997
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Extremely low-resource (XLR) languages lack substantial corpora for training NLP models, motivating the use of all available resources such as dictionaries and grammar books. Machine Translation from One Book (Tanzer et al., 2024) suggests that prompting long-context LLMs with one grammar book enables English-Kalamang translation, an XLR language unseen by LLMs - a noteworthy case of linguistics helping an NLP task. We investigate the source of this translation ability, finding almost all improvements stem from the book's parallel examples rather than its grammatical explanations. We find similar results for Nepali and Guarani, seen low-resource languages, and we achieve performance comparable to an LLM with a grammar book by simply fine-tuning an encoder-decoder translation model. We then investigate where grammar books help by testing two linguistic tasks, grammaticality judgment and gloss prediction, and we explore what kind of grammatical knowledge helps by introducing a typological feature prompt that achieves leading results on these more relevant tasks. We thus emphasise the importance of task-appropriate data for XLR languages: parallel examples for translation, and grammatical data for linguistic tasks. As we find no evidence that long-context LLMs can make effective use of grammatical explanations for XLR translation, we conclude data collection for multilingual XLR tasks such as translation is best focused on parallel data over linguistic description.
- Abstract(参考訳): XLR (Extremely Low-Resource) 言語は、NLPモデルをトレーニングするためのかなりのコーパスを欠き、辞書や文法書などの利用可能なすべてのリソースの使用を動機付けている。
1冊の本(Tanzer et al , 2024)からの機械翻訳は、1冊の文法書で長文のLLMを促進させることで、LLMに見えないXLR言語であるイングリッシュ・カラマン語翻訳が可能になることを示唆している。
この翻訳能力の源泉について検討し,その文法的説明よりも,本書の並列例からほぼすべての改良点を見出した。
低リソース言語であるネパール語とグアラニ語でも同様の結果が得られ、エンコーダとデコーダの翻訳モデルを簡単に微調整することで文法書を用いたLLMに匹敵する性能を達成する。
次に,文法書が文法的判断とグロース予測という2つの言語的タスクをテストする上で,どのような文法的知識が役に立つかを検討する。
そこで我々は,XLR言語におけるタスク適合データの重要性を強調した。
長文LLMがXLR翻訳に文法的説明を効果的に活用できるという証拠は見つからないので、翻訳などの多言語XLRタスクのデータ収集は言語記述よりも並列データに最も重点を置いていると結論づける。
関連論文リスト
- Can LLMs Help Create Grammar?: Automating Grammar Creation for Endangered Languages with In-Context Learning [0.0]
本稿では,Large Language Models (LLMs) が低リソース言語に対して限られたデータ量で文法情報を生成するのにどのように役立つかを検討する。
提案手法では,既存の言語データを整理し,形式的XLE文法を効率的に生成できるようにする。
本研究は,LLMが言語文書作成の取り組みを強化し,言語データの生成に費用対効果のあるソリューションを提供し,絶滅危惧言語の保存に寄与する可能性を明らかにする。
論文 参考訳(メタデータ) (2024-12-14T20:43:12Z) - Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models [52.00446751692225]
textbfDictionary textbfInsertion textbfPrompting (textbfDIP) という,新規かつシンプルで効果的な方法を提案する。
非英語のプロンプトを提供する際、DIPは単語辞書を調べ、単語の英語のプロンプトをLLMのプロンプトに挿入する。
そして、英語へのより良い翻訳とより良い英語モデル思考のステップを可能にし、明らかにより良い結果をもたらす。
論文 参考訳(メタデータ) (2024-11-02T05:10:50Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - Generating bilingual example sentences with large language models as lexicography assistants [2.6550899846546527]
本稿では,資源レベルの異なる言語におけるバイリンガル辞書の例文の生成と評価におけるLLMの性能について検討する。
GDEX(Good Dictionary Example)基準に対するLCM生成例の品質評価を行った。
論文 参考訳(メタデータ) (2024-10-04T06:45:48Z) - Learning-From-Mistakes Prompting for Indigenous Language Translation [3.7790255156708397]
本稿では,低リソースの母国語翻訳を改善する手法を提案する。
我々のアプローチは、限られた数の並列翻訳例からなるデータストアの使用に基礎を置いています。
我々は、LLMをユニバーサルトランスレータとして使用するような設定において、LLMと文脈内学習技術のポテンシャルを利用する。
論文 参考訳(メタデータ) (2024-07-18T09:41:20Z) - Shortcomings of LLMs for Low-Resource Translation: Retrieval and Understanding are Both the Problem [4.830018386227]
本研究では,機械翻訳パイプラインの自動化の一環として,事前学習された大言語モデル(LLM)が低リソース言語から高リソース言語への翻訳を指示する際の文脈内学習能力について検討する。
我々は南ケチュアをスペイン語に翻訳する一連の実験を行い、デジタル化された教育材料と平行コーパスの制約されたデータベースから得られた様々な種類の文脈の情報量について検討する。
論文 参考訳(メタデータ) (2024-06-21T20:02:22Z) - Machine Translation with Large Language Models: Prompt Engineering for
Persian, English, and Russian Directions [0.0]
生成型大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、例外的な習熟性を示している。
我々は,ペルシャ語,英語,ロシア語の言語間組み合わせに着目した2つの普及促進手法とその組み合わせについて調査を行った。
論文 参考訳(メタデータ) (2024-01-16T15:16:34Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Chain-of-Dictionary Prompting Elicits Translation in Large Language Models [100.47154959254937]
大規模言語モデル(LLM)は多言語ニューラルマシン翻訳(MNMT)において驚くほど優れた性能を示した
入力単語のサブセットに対する多言語辞書の連鎖による事前知識でLLMを拡張して翻訳能力を引き出す新しい方法であるCoDを提案する。
論文 参考訳(メタデータ) (2023-05-11T05:19:47Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。