論文の概要: Feature Estimation of Global Language Processing in EEG Using Attention Maps
- arxiv url: http://arxiv.org/abs/2409.19174v1
- Date: Fri, 27 Sep 2024 22:52:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 04:11:01.538575
- Title: Feature Estimation of Global Language Processing in EEG Using Attention Maps
- Title(参考訳): 注意図を用いた脳波におけるグローバル言語処理の特徴推定
- Authors: Dai Shimizu, Ko Watanabe, Andreas Dengel,
- Abstract要約: 本研究は,脳波の特徴推定に新たなアプローチを導入し,深層学習モデルの重みを利用してその関連を探索する。
視覚変換器とEEGNetから生成したアテンションマップは,従来の研究結果と一致した特徴を効果的に同定できることを実証する。
ViTsを用いたMel-Spectrogramの適用により、時間および周波数関連脳波特性の分解能が向上する。
- 参考スコア(独自算出の注目度): 5.173821279121835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the correlation between EEG features and cognitive tasks is crucial for elucidating brain function. Brain activity synchronizes during speaking and listening tasks. However, it is challenging to estimate task-dependent brain activity characteristics with methods with low spatial resolution but high temporal resolution, such as EEG, rather than methods with high spatial resolution, like fMRI. This study introduces a novel approach to EEG feature estimation that utilizes the weights of deep learning models to explore this association. We demonstrate that attention maps generated from Vision Transformers and EEGNet effectively identify features that align with findings from prior studies. EEGNet emerged as the most accurate model regarding subject independence and the classification of Listening and Speaking tasks. The application of Mel-Spectrogram with ViTs enhances the resolution of temporal and frequency-related EEG characteristics. Our findings reveal that the characteristics discerned through attention maps vary significantly based on the input data, allowing for tailored feature extraction from EEG signals. By estimating features, our study reinforces known attributes and predicts new ones, potentially offering fresh perspectives in utilizing EEG for medical purposes, such as early disease detection. These techniques will make substantial contributions to cognitive neuroscience.
- Abstract(参考訳): 脳波の特徴と認知タスクの相関を理解することは脳機能の解明に不可欠である。
脳活動は、会話や聴取作業中に同期する。
しかし、fMRIのような高空間分解能の手法よりも、脳波のような低空間分解能だが高時間分解能の手法でタスク依存脳活動特性を推定することは困難である。
本研究は,脳波の特徴推定に新たなアプローチを導入し,深層学習モデルの重みを利用してその関連を探索する。
視覚変換器とEEGNetから生成したアテンションマップは,従来の研究結果と一致した特徴を効果的に同定できることを実証する。
EEGNetは、被写体独立とリスニングタスクの分類に関する最も正確なモデルとして登場した。
ViTsを用いたMel-Spectrogramの適用により、時間および周波数関連脳波特性の分解能が向上する。
本研究により,脳波信号から特徴抽出を行うことができるため,注意マップから識別される特徴は入力データによって大きく異なることが明らかとなった。
特徴を推定することにより、既知の属性を強化し、新しい属性を予測し、早期疾患検出などの医療目的にEEGを活用する上で、新たな視点を提供する可能性がある。
これらの技術は認知神経科学に多大な貢献をする。
関連論文リスト
- Focused State Recognition Using EEG with Eye Movement-Assisted Annotation [4.705434077981147]
脳波と眼球運動の特徴を学習するためのディープラーニングモデルは、脳活動の分類に有効である。
焦点を絞った状態は、タスクや思考に強い集中力を示し、焦点を絞らない状態は目の動きによって達成される。
論文 参考訳(メタデータ) (2024-06-15T14:06:00Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
我々は、クロスオブジェクト感情認識のための訓練済みモデルに基づくMultimodal Mood Readerを開発した。
このモデルは、大規模データセットの事前学習を通じて、脳波信号の普遍的な潜在表現を学習する。
公開データセットに関する大規模な実験は、クロスオブジェクト感情認識タスクにおけるMood Readerの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-28T14:31:11Z) - Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data [6.401370088497331]
本稿では,脳波の位置と対応する脳領域のセマンティクスの相互作用を捉える動的グラフニューラルネットワーク(GNN)フレームワークであるNeuroGNNを紹介する。
実世界のデータを用いた実験により、NeuroGNNは既存の最先端モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-05-08T21:36:49Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
本稿では,学習可能なフィルタと事前決定された特徴抽出モジュールからなる新しい識別可能なEEGデコーディングパイプラインを提案する。
我々は,SEEDデータセットおよび前例のない大きさの新たな脳波データセット上で,脳波信号からの感情認識に向けたモデルの有用性を実証する。
発見された特徴は、以前の神経科学の研究と一致し、音楽聴取中の左右の時間領域間の機能的接続プロファイルの顕著な相違など、新たな洞察を提供する。
論文 参考訳(メタデータ) (2021-10-19T14:22:04Z) - EEG-based Cross-Subject Driver Drowsiness Recognition with an
Interpretable Convolutional Neural Network [0.0]
我々は,新しい畳み込みニューラルネットワークと解釈手法を組み合わせることで,分類の重要な特徴のサンプルワイズ分析を可能にする。
その結果,11名の被験者に対して平均78.35%の精度が得られた。
論文 参考訳(メタデータ) (2021-05-30T14:47:20Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z) - Human brain activity for machine attention [8.673635963837532]
我々は脳波(EEG)という神経科学データを初めて活用し、人間の脳の言語処理について神経の注意モデルに知らせる。
我々は、理論上動機付けられた収穫と無作為な森林分枝を組み合わせることで、機械の注意を監督する脳波の特徴を見つける手法を考案した。
これらの特徴を関係分類の注意を規則化するために応用し、脳波が強い基準線よりも情報的であることを示す。
論文 参考訳(メタデータ) (2020-06-09T08:39:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。