Evidence Is All You Need: Ordering Imaging Studies via Language Model Alignment with the ACR Appropriateness Criteria
- URL: http://arxiv.org/abs/2409.19177v2
- Date: Tue, 1 Oct 2024 14:44:52 GMT
- Title: Evidence Is All You Need: Ordering Imaging Studies via Language Model Alignment with the ACR Appropriateness Criteria
- Authors: Michael S. Yao, Allison Chae, Charles E. Kahn Jr., Walter R. Witschey, James C. Gee, Hersh Sagreiya, Osbert Bastani,
- Abstract summary: We introduce a framework to intelligently leverage language models by recommending imaging studies for patient cases aligned with evidence-based guidelines.
We make available a novel dataset of patient "one-liner" scenarios to power our experiments, and optimize state-of-the-art language models to achieve an accuracy on par with clinicians in image ordering.
- Score: 22.897900474995012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diagnostic imaging studies are an increasingly important component of the workup and management of acutely presenting patients. However, ordering appropriate imaging studies according to evidence-based medical guidelines is a challenging task with a high degree of variability between healthcare providers. To address this issue, recent work has investigated if generative AI and large language models can be leveraged to help clinicians order relevant imaging studies for patients. However, it is challenging to ensure that these tools are correctly aligned with medical guidelines, such as the American College of Radiology's Appropriateness Criteria (ACR AC). In this study, we introduce a framework to intelligently leverage language models by recommending imaging studies for patient cases that are aligned with evidence-based guidelines. We make available a novel dataset of patient "one-liner" scenarios to power our experiments, and optimize state-of-the-art language models to achieve an accuracy on par with clinicians in image ordering. Finally, we demonstrate that our language model-based pipeline can be used as intelligent assistants by clinicians to support image ordering workflows and improve the accuracy of imaging study ordering according to the ACR AC. Our work demonstrates and validates a strategy to leverage AI-based software to improve trustworthy clinical decision making in alignment with expert evidence-based guidelines.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions [8.50767187405446]
We propose D-Rax -- a domain-specific, conversational, radiologic assistance tool.
We enhance the conversational analysis of chest X-ray (CXR) images to support radiological reporting.
We observe statistically significant improvement in responses when evaluated for both open and close-ended conversations.
arXiv Detail & Related papers (2024-07-02T18:43:10Z) - UIT-DarkCow team at ImageCLEFmedical Caption 2024: Diagnostic Captioning for Radiology Images Efficiency with Transformer Models [0.0]
This study focuses on the development of automated text generation from radiology images, termed diagnostic captioning.
The aim is to provide tools that enhance report quality and efficiency, which can significantly impact both clinical practice and deep learning research.
arXiv Detail & Related papers (2024-05-27T09:46:09Z) - VISION: Toward a Standardized Process for Radiology Image Management at the National Level [3.793492459789475]
We describe our experiences in establishing a trusted collection of radiology images linked to the United States Department of Veterans Affairs (VA) electronic health record database.
Key insights include uncovering the specific procedures required for transferring images from a clinical to a research-ready environment.
arXiv Detail & Related papers (2024-04-29T16:30:24Z) - Application Of Vision-Language Models For Assessing Osteoarthritis
Disease Severity [0.43431539537721414]
Osteoarthritis (OA) poses a global health challenge, demanding precise diagnostic methods.
Existing deep learning models for OA assessment are unimodal single task systems.
This study investigates employing Vision Language Processing models to predict OA severity using Xray images and corresponding reports.
arXiv Detail & Related papers (2024-01-12T02:43:58Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIA is a trustworthy deep learning framework for medical image analysis.
It is anticipated that the framework will support researchers and clinicians in advancing the use of deep learning for dealing with public health crises including COVID-19.
arXiv Detail & Related papers (2022-12-06T05:30:22Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.