How do Practitioners Perceive Energy Consumption on Stack Overflow?
- URL: http://arxiv.org/abs/2409.19222v1
- Date: Sat, 28 Sep 2024 03:28:52 GMT
- Title: How do Practitioners Perceive Energy Consumption on Stack Overflow?
- Authors: Bihui Jin, Heng Li, Ying Zou,
- Abstract summary: We conduct an empirical analysis of Stack Overflow (SO) questions concerning energy consumption.
These questions reflect real-world energy-related predicaments faced by practitioners in their daily development activities.
Our observations raise awareness among practitioners about the impact of energy consumption on developing software systems.
- Score: 3.000496428347787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy consumption of software applications has emerged as a critical issue for practitioners to contemplate in their daily development processes. Previous studies have performed user surveys with a limited number of practitioners to comprehend practitioners' viewpoints on energy consumption. In this paper, we complement prior studies by conducting an empirical analysis of a meticulously curated dataset comprising 985 Stack Overflow (SO) questions concerning energy consumption. These questions reflect real-world energy-related predicaments faced by practitioners in their daily development activities. To understand practitioners' perception of energy consumption, we investigate the intentions behind these questions, their semantic topics, as well as the tag categories associated with these questions. Our empirical study results reveal that (i) the intentions that drive the questioners to initiate posts and ask questions are primarily associated with understanding a concept or how to use an API; (ii) the most prevalent topic related to energy consumption concerns computing resources; (iii) monitoring energy usage poses a challenging issue, and it takes the longest response time to receive a community response to the questions; and (iv) practitioners are apprehensive about energy consumption from different levels, i.e., hardware, operating systems, and programming languages, during the development of the applications. Our work furnishes insights into the issues related to energy consumption faced by practitioners. Our observations raise awareness among practitioners about the impact of energy consumption on developing software systems from different perspectives, such as coding efficiency and energy monitoring, and shed light on future research opportunities to assist practitioners in developing energy-efficient software systems.
Related papers
- Prompt engineering and its implications on the energy consumption of Large Language Models [4.791072577881446]
Large language models (LLMs) in software engineering pose severe challenges regarding computational resources, data centers, and carbon emissions.
In this paper, we investigate how prompt engineering techniques (PETs) can impact the carbon emission of the Llama 3 model for the code generation task.
arXiv Detail & Related papers (2025-01-10T11:49:31Z) - Unveiling the Energy Vampires: A Methodology for Debugging Software Energy Consumption [5.602876058122268]
This paper presents an energy debug methodology for identifying and isolating energy consumption hotspots in software systems.
Our analysis reveals significant energy consumption differences between Alpine and Ubuntu distributions.
By isolating and benchmarking memcpy, we confirm it as the primary cause of the energy discrepancy.
arXiv Detail & Related papers (2024-12-13T11:49:19Z) - Double-Exponential Increases in Inference Energy: The Cost of the Race for Accuracy [3.6731536660959985]
Deep learning models in computer vision pose increasing concerns about energy consumption and sustainability.
We conduct a comprehensive analysis of the inference energy consumption of 1,200 ImageNet classification models.
We identify key factors contributing to energy consumption and demonstrate methods to improve energy efficiency.
arXiv Detail & Related papers (2024-12-12T21:44:08Z) - Estimating the Energy Footprint of Software Systems: a Primer [56.200335252600354]
quantifying the energy footprint of a software system is one of the most basic activities.
This document aims to be a starting point for researchers who want to begin conducting work in this area.
arXiv Detail & Related papers (2024-07-16T11:21:30Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
We focus on text summarization, a common NLP task largely overlooked by the responsible AI community.
We conduct a multi-round qualitative analysis of 333 summarization papers from the ACL Anthology published between 2020-2022.
We focus on how, which, and when responsible AI issues are covered, which relevant stakeholders are considered, and mismatches between stated and realized research goals.
arXiv Detail & Related papers (2023-11-18T15:35:36Z) - Reduce, Reuse, Recycle: Building Greener Sustainable Software [0.22252684361733285]
Data centers account for more than one percent of all power usage worldwide.
Non-trivial energy savings can be achieved in software by making energy-conscious decisions regarding basic aspects of programming.
arXiv Detail & Related papers (2023-11-03T03:03:13Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Enhancing Energy-Awareness in Deep Learning through Fine-Grained Energy
Measurement [11.37120215795946]
This paper introduces FECoM (Fine-grained Energy Consumption Meter), a framework for fine-grained Deep Learning energy consumption measurement.
FECoM addresses the challenges of measuring energy consumption at fine-grained level by using static instrumentation and considering various factors, including computational load stability and temperature.
arXiv Detail & Related papers (2023-08-23T17:32:06Z) - Compute and Energy Consumption Trends in Deep Learning Inference [67.32875669386488]
We study relevant models in the areas of computer vision and natural language processing.
For a sustained increase in performance we see a much softer growth in energy consumption than previously anticipated.
arXiv Detail & Related papers (2021-09-12T09:40:18Z) - A Study of Knowledge Sharing related to Covid-19 Pandemic in Stack
Overflow [69.5231754305538]
Study of 464 Stack Overflow questions posted mainly in February and March 2020 and leveraging the power of text mining.
Findings reveal that indeed this global crisis sparked off an intense and increasing activity in Stack Overflow with most post topics reflecting a strong interest on the analysis of Covid-19 data.
arXiv Detail & Related papers (2020-04-18T08:19:46Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.