Scalable Cloud-Native Pipeline for Efficient 3D Model Reconstruction from Monocular Smartphone Images
- URL: http://arxiv.org/abs/2409.19322v1
- Date: Sat, 28 Sep 2024 11:15:26 GMT
- Title: Scalable Cloud-Native Pipeline for Efficient 3D Model Reconstruction from Monocular Smartphone Images
- Authors: Potito Aghilar, Vito Walter Anelli, Michelantonio Trizio, Tommaso Di Noia,
- Abstract summary: We present a novel cloud-native pipeline that can automatically reconstruct 3D models from monocular 2D images captured using a smartphone camera.
Our solution produces a reusable 3D model, with embedded materials and textures, exportable and customizable in any external software or 3D engine.
- Score: 9.61065600471628
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, 3D models have gained popularity in various fields, including entertainment, manufacturing, and simulation. However, manually creating these models can be a time-consuming and resource-intensive process, making it impractical for large-scale industrial applications. To address this issue, researchers are exploiting Artificial Intelligence and Machine Learning algorithms to automatically generate 3D models effortlessly. In this paper, we present a novel cloud-native pipeline that can automatically reconstruct 3D models from monocular 2D images captured using a smartphone camera. Our goal is to provide an efficient and easily-adoptable solution that meets the Industry 4.0 standards for creating a Digital Twin model, which could enhance personnel expertise through accelerated training. We leverage machine learning models developed by NVIDIA Research Labs alongside a custom-designed pose recorder with a unique pose compensation component based on the ARCore framework by Google. Our solution produces a reusable 3D model, with embedded materials and textures, exportable and customizable in any external 3D modelling software or 3D engine. Furthermore, the whole workflow is implemented by adopting the microservices architecture standard, enabling each component of the pipeline to operate as a standalone replaceable module.
Related papers
- Photogrammetry for Digital Twinning Industry 4.0 (I4) Systems [0.43127334486935653]
Digital Twins (DT) are transformational technology that leverage software systems to replicate physical process behavior.
This paper aims to explore the use of photogrammetry and 3D scanning techniques to create accurate visual representation of the 'Physical Process'
The results indicate that photogrammetry using consumer-grade devices can be an efficient and cost-efficient approach to creating DTs for smart manufacturing.
arXiv Detail & Related papers (2024-07-12T04:51:19Z) - Atlas3D: Physically Constrained Self-Supporting Text-to-3D for Simulation and Fabrication [50.541882834405946]
We introduce Atlas3D, an automatic and easy-to-implement text-to-3D method.
Our approach combines a novel differentiable simulation-based loss function with physically inspired regularization.
We verify Atlas3D's efficacy through extensive generation tasks and validate the resulting 3D models in both simulated and real-world environments.
arXiv Detail & Related papers (2024-05-28T18:33:18Z) - InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models [66.83681825842135]
InstantMesh is a feed-forward framework for instant 3D mesh generation from a single image.
It features state-of-the-art generation quality and significant training scalability.
We release all the code, weights, and demo of InstantMesh with the intention that it can make substantial contributions to the community of 3D generative AI.
arXiv Detail & Related papers (2024-04-10T17:48:37Z) - VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models [20.084928490309313]
This paper presents a novel method for building scalable 3D generative models utilizing pre-trained video diffusion models.
By unlocking its multi-view generative capabilities through fine-tuning, we generate a large-scale synthetic multi-view dataset to train a feed-forward 3D generative model.
The proposed model, VFusion3D, trained on nearly 3M synthetic multi-view data, can generate a 3D asset from a single image in seconds.
arXiv Detail & Related papers (2024-03-18T17:59:12Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - GET3D--: Learning GET3D from Unconstrained Image Collections [27.470617383305726]
We propose GET3D--, the first method that directly generates textured 3D shapes from 2D images with unknown pose and scale.
GET3D-- comprises a 3D shape generator and a learnable camera sampler that captures the 6D external changes on the camera.
arXiv Detail & Related papers (2023-07-27T15:00:54Z) - GINA-3D: Learning to Generate Implicit Neural Assets in the Wild [38.51391650845503]
GINA-3D is a generative model that uses real-world driving data from camera and LiDAR sensors to create 3D implicit neural assets of diverse vehicles and pedestrians.
We construct a large-scale object-centric dataset containing over 1.2M images of vehicles and pedestrians.
We demonstrate that it achieves state-of-the-art performance in quality and diversity for both generated images and geometries.
arXiv Detail & Related papers (2023-04-04T23:41:20Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
We introduce GET3D, a Generative model that directly generates Explicit Textured 3D meshes with complex topology, rich geometric details, and high-fidelity textures.
GET3D is able to generate high-quality 3D textured meshes, ranging from cars, chairs, animals, motorbikes and human characters to buildings.
arXiv Detail & Related papers (2022-09-22T17:16:19Z) - BANMo: Building Animatable 3D Neural Models from Many Casual Videos [135.64291166057373]
We present BANMo, a method that requires neither a specialized sensor nor a pre-defined template shape.
Banmo builds high-fidelity, articulated 3D models from many monocular casual videos in a differentiable rendering framework.
On real and synthetic datasets, BANMo shows higher-fidelity 3D reconstructions than prior works for humans and animals.
arXiv Detail & Related papers (2021-12-23T18:30:31Z) - Monocular Real-time Hand Shape and Motion Capture using Multi-modal Data [77.34069717612493]
We present a novel method for monocular hand shape and pose estimation at unprecedented runtime performance of 100fps.
This is enabled by a new learning based architecture designed such that it can make use of all the sources of available hand training data.
It features a 3D hand joint detection module and an inverse kinematics module which regresses not only 3D joint positions but also maps them to joint rotations in a single feed-forward pass.
arXiv Detail & Related papers (2020-03-21T03:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.