論文の概要: 1st Place Solution of Multiview Egocentric Hand Tracking Challenge ECCV2024
- arxiv url: http://arxiv.org/abs/2409.19362v2
- Date: Tue, 8 Oct 2024 08:18:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 23:48:39.611485
- Title: 1st Place Solution of Multiview Egocentric Hand Tracking Challenge ECCV2024
- Title(参考訳): 1st Place Solution of Multiview Egocentric Hand Tracking Challenge ECCV2024
- Authors: Minqiang Zou, Zhi Lv, Riqiang Jin, Tian Zhan, Mochen Yu, Yao Tang, Jiajun Liang,
- Abstract要約: マルチビュー入力画像とカメラパラメータを用いて手形状とポーズを推定する手法を提案する。
提案手法は,Umetrackデータセットで13.92mm MPJPE,HOT3Dデータセットで21.66mm MPJPEを実現する。
- 参考スコア(独自算出の注目度): 8.462982928029135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view egocentric hand tracking is a challenging task and plays a critical role in VR interaction. In this report, we present a method that uses multi-view input images and camera extrinsic parameters to estimate both hand shape and pose. To reduce overfitting to the camera layout, we apply crop jittering and extrinsic parameter noise augmentation. Additionally, we propose an offline neural smoothing post-processing method to further improve the accuracy of hand position and pose. Our method achieves 13.92mm MPJPE on the Umetrack dataset and 21.66mm MPJPE on the HOT3D dataset.
- Abstract(参考訳): マルチビューの自我中心のハンドトラッキングは困難なタスクであり、VRインタラクションにおいて重要な役割を果たす。
本稿では,マルチビュー入力画像とカメラ外在パラメータを用いて手形状とポーズを推定する手法を提案する。
カメラレイアウトへの過度な適合を抑えるため、作物のジッタリングと外部パラメータノイズ増強を適用した。
さらに,手の位置とポーズの精度をより高めるために,オフラインの神経スムーシング後処理法を提案する。
提案手法は,Umetrackデータセットで13.92mm MPJPE,HOT3Dデータセットで21.66mm MPJPEを実現する。
関連論文リスト
- 1st Place Solution of Egocentric 3D Hand Pose Estimation Challenge 2023
Technical Report:A Concise Pipeline for Egocentric Hand Pose Reconstruction [11.551318550321938]
AssemblyHandsを使って、この課題は、単視点画像からエゴセントリックな3D手ポーズの推定に焦点を当てる。
ViTベースのバックボーンと、強力なモデルベースラインを提供する3Dキーポイント予測のためのシンプルな回帰器を採用しています。
提案手法は,テストデータセット上で12.21mmMPJPEを達成し,Egocentric 3D Hand Pose Estimation において第1位を獲得した。
論文 参考訳(メタデータ) (2023-10-07T10:25:50Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
本稿では,3次元視覚タスクにおける現在のデータセットの限界について,精度,サイズ,リアリズム,および光度に挑戦する対象に対する適切な画像モダリティの観点から検討する。
既存の3次元認識と6次元オブジェクトポーズデータセットを強化する新しいアノテーションと取得パイプラインを提案する。
論文 参考訳(メタデータ) (2023-08-21T10:38:32Z) - Enhancing Multi-Camera People Tracking with Anchor-Guided Clustering and
Spatio-Temporal Consistency ID Re-Assignment [22.531044994763487]
本稿では,アンカークラスタリング誘導を用いたマルチカメラによる複数人物追跡手法を提案する。
提案手法は,各個人固有の重要な特徴を特定することによって,トラッキングの精度を向上させることを目的としている。
この手法は, 合成データと実世界のデータの両方を扱う上で, 堅牢性と有効性を示した。
論文 参考訳(メタデータ) (2023-04-19T07:38:15Z) - Towards Nonlinear-Motion-Aware and Occlusion-Robust Rolling Shutter
Correction [54.00007868515432]
既存の手法では、一様速度仮定による補正の精度を推定する上で、課題に直面している。
本稿では,個々の画素の高次補正場を正確に推定する,幾何的回転シャッター(QRS)運動解法を提案する。
提案手法は,Carla-RS,Fastec-RS,BS-RSCの各データセット上で,PSNRの+4.98,+0.77,+4.33を超える。
論文 参考訳(メタデータ) (2023-03-31T15:09:18Z) - Shakes on a Plane: Unsupervised Depth Estimation from Unstabilized
Photography [54.36608424943729]
2秒で取得した12メガピクセルのRAWフレームの「長バースト」では,自然手震動のみからの視差情報で高品質のシーン深度を回復できることが示されている。
我々は、長時間バーストデータにニューラルRGB-D表現を適合させるテスト時間最適化手法を考案し、シーン深度とカメラモーションを同時に推定する。
論文 参考訳(メタデータ) (2022-12-22T18:54:34Z) - Multi-task Learning for Camera Calibration [3.274290296343038]
一対の画像から内在性(主点オフセットと焦点長)と外因性(ベースライン,ピッチ,翻訳)を予測できるユニークな手法を提案する。
カメラモデルニューラルネットワークを用いて3Dポイントを再構成し、再構成の損失を利用してカメラ仕様を得ることにより、この革新的なカメラ投影損失(CPL)法により、所望のパラメータを推定できる。
論文 参考訳(メタデータ) (2022-11-22T17:39:31Z) - Transformer-based Global 3D Hand Pose Estimation in Two Hands
Manipulating Objects Scenarios [13.59950629234404]
本報告では,エゴセントリックカメラとマルチビューカメラによるECCV 2022による人体・手・活動(HBHA)問題に対する第1位ソリューションについて述べる(手ポーズ推定)。
本研究では,2つの手と物体が自我中心の視点で相互作用している入力画像から,グローバルな3次元手ポーズを推定することを目的とする。
提案手法は,トランスアーキテクチャを用いたエンドツーエンドのマルチハンドポーズ推定を行う。
論文 参考訳(メタデータ) (2022-10-20T16:24:47Z) - Lightweight Multi-person Total Motion Capture Using Sparse Multi-view
Cameras [35.67288909201899]
スパース多視点カメラのみを用いた多人数対話型シナリオのための軽量な総合的モーションキャプチャシステムを提案する。
本手法は,重度の閉塞時であっても,手と顔の効率的な位置決めと正確な関連付けが可能である。
本報告では, 高速, 頑健, 高精度な多対人モーションキャプチャ性能を実現するための, 初の軽量全モーションキャプチャシステムを提案する。
論文 参考訳(メタデータ) (2021-08-23T19:23:35Z) - MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision [72.5863451123577]
正確な3Dポーズとカメラ推定が可能なニューラルモデルをトレーニングする方法を示す。
本手法は,古典的バンドル調整と弱教師付き単分子3Dベースラインの両方に優れる。
論文 参考訳(メタデータ) (2021-08-10T18:39:56Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
deep multicapは、スパースマルチビューカメラを用いたマルチパーソンパフォーマンスキャプチャのための新しい手法である。
本手法では,事前走査型テンプレートモデルを用いることなく,時間変化した表面の詳細をキャプチャできる。
論文 参考訳(メタデータ) (2021-05-01T14:32:13Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。