論文の概要: How much do we really know about Structure Learning from i.i.d. Data? Interpretable, multi-dimensional Performance Indicator for Causal Discovery
- arxiv url: http://arxiv.org/abs/2409.19377v1
- Date: Sat, 28 Sep 2024 15:03:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 23:38:55.317940
- Title: How much do we really know about Structure Learning from i.i.d. Data? Interpretable, multi-dimensional Performance Indicator for Causal Discovery
- Title(参考訳): I.D.データからの構造化学習について、どの程度の知識があるか?-因果発見のための解釈可能な多次元パフォーマンス指標
- Authors: Georg Velev, Stefan Lessmann,
- Abstract要約: 観測データからの因果発見は、データ生成プロセスで使用される構造方程式の定式化に厳密な識別可能性の仮定を課す。
統合された性能評価フレームワークの欠如により、我々は解釈可能な6次元評価指標、すなわち、最適解の距離(DOS)を導入する。
本研究は、7つの異なる家系における構造学習アルゴリズムの性能を、不特定非非線形因果パターンの割合の増加に基づいて評価する最初の研究である。
- 参考スコア(独自算出の注目度): 3.8443430569753025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonlinear causal discovery from observational data imposes strict identifiability assumptions on the formulation of structural equations utilized in the data generating process. The evaluation of structure learning methods under assumption violations requires a rigorous and interpretable approach, which quantifies both the structural similarity of the estimation with the ground truth and the capacity of the discovered graphs to be used for causal inference. Motivated by the lack of unified performance assessment framework, we introduce an interpretable, six-dimensional evaluation metric, i.e., distance to optimal solution (DOS), which is specifically tailored to the field of causal discovery. Furthermore, this is the first research to assess the performance of structure learning algorithms from seven different families on increasing percentage of non-identifiable, nonlinear causal patterns, inspired by real-world processes. Our large-scale simulation study, which incorporates seven experimental factors, shows that besides causal order-based methods, amortized causal discovery delivers results with comparatively high proximity to the optimal solution. In addition to the findings from our sensitivity analysis, we explore interactions effects between the experimental factors of our simulation framework in order to provide transparency about the expected performance of causal discovery techniques in different scenarios.
- Abstract(参考訳): 観測データからの非線形因果発見は、データ生成プロセスで利用される構造方程式の定式化に厳密な識別可能性の仮定を課す。
仮定違反による構造学習手法の評価には厳密で解釈可能なアプローチが必要であり、この手法は推定と基底真理との構造的類似性と因果推論に使用する発見グラフのキャパシティの両方を定量化する。
統合された性能評価フレームワークが欠如していることから,我々は,因果発見の分野に特化して最適解の距離(DOS)を解釈可能な6次元評価指標として導入した。
さらに、実世界のプロセスにインスパイアされた非識別・非線形因果パターンの比率を増大させることで、7つの異なるファミリーからの構造学習アルゴリズムの性能を評価する最初の研究である。
7つの実験要素を組み込んだ大規模シミュレーション研究により,因果的順序に基づく方法に加えて,因果的因果発見が最適解に比較的近い結果をもたらすことが示された。
感度分析の結果に加えて,シミュレーションフレームワークの実験的要因間の相互作用効果について検討し,様々なシナリオにおける因果発見技術の性能に関する透明性を提供する。
関連論文リスト
- Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
下流推論に重点を置く因果発見手法の評価において,顕著なギャップが存在する。
我々は,GFlowNetsに基づく新たな手法を含む,確立された7つの基本因果探索手法を評価する。
研究の結果,研究対象のアルゴリズムのいくつかは,多種多様なATEモードを効果的に捉えることができることがわかった。
論文 参考訳(メタデータ) (2023-07-11T02:58:10Z) - Data-Driven Estimation of Heterogeneous Treatment Effects [15.140272661540655]
異種治療効果推定(ヘテロジニアス・エフェクト・アセスメント・アセスメント・アセスメント・アセスメント・アセスメント・アセスメント)は、経験科学において重要な問題である。
機械学習を用いた不均一な処理効果推定のための最先端データ駆動手法について調査する。
論文 参考訳(メタデータ) (2023-01-16T21:36:49Z) - A Meta-Reinforcement Learning Algorithm for Causal Discovery [3.4806267677524896]
因果構造は、モデルが純粋な相関に基づく推論を超えることを可能にする。
データから因果構造を見つけることは、計算の労力と精度の両方において大きな課題となる。
我々は,介入を学習することで因果発見を行うメタ強化学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-07-18T09:26:07Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
我々は因果発見の課題と観察データに焦点をあてる。
因果構造の特異な識別に必要かつ十分な条件のセットを導出する。
論文 参考訳(メタデータ) (2021-10-30T21:32:42Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - A Critical View of the Structural Causal Model [89.43277111586258]
相互作用を全く考慮せずに原因と効果を識別できることが示される。
本稿では,因果モデルの絡み合った構造を模倣する新たな逆行訓練法を提案する。
我々の多次元手法は, 合成および実世界の両方のデータセットにおいて, 文献的手法よりも優れている。
論文 参考訳(メタデータ) (2020-02-23T22:52:28Z) - Causal Discovery from Incomplete Data: A Deep Learning Approach [21.289342482087267]
因果構造探索と因果構造探索を反復的に行うために, 因果学習を提案する。
ICLは、異なるデータメカニズムで最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-15T14:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。