論文の概要: Interpretable, multi-dimensional Evaluation Framework for Causal Discovery from observational i.i.d. Data
- arxiv url: http://arxiv.org/abs/2409.19377v2
- Date: Mon, 16 Dec 2024 11:09:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:52:33.096887
- Title: Interpretable, multi-dimensional Evaluation Framework for Causal Discovery from observational i.i.d. Data
- Title(参考訳): 観測データからの因果発見のための解釈可能な多次元評価フレームワーク
- Authors: Georg Velev, Stefan Lessmann,
- Abstract要約: 観測データからの因果発見は、データ生成プロセスで使用される構造方程式の定式化に厳密な識別可能性の仮定を課す。
統合された性能評価フレームワークの欠如により、我々は解釈可能な6次元評価指標、すなわち、最適解の距離(DOS)を導入する。
本研究は、7つの異なる家系における構造学習アルゴリズムの性能を、不特定非非線形因果パターンの割合の増加に基づいて評価する最初の研究である。
- 参考スコア(独自算出の注目度): 3.8443430569753025
- License:
- Abstract: Nonlinear causal discovery from observational data imposes strict identifiability assumptions on the formulation of structural equations utilized in the data generating process. The evaluation of structure learning methods under assumption violations requires a rigorous and interpretable approach, which quantifies both the structural similarity of the estimation with the ground truth and the capacity of the discovered graphs to be used for causal inference. Motivated by the lack of unified performance assessment framework, we introduce an interpretable, six-dimensional evaluation metric, i.e., distance to optimal solution (DOS), which is specifically tailored to the field of causal discovery. Furthermore, this is the first research to assess the performance of structure learning algorithms from seven different families on increasing percentage of non-identifiable, nonlinear causal patterns, inspired by real-world processes. Our large-scale simulation study, which incorporates seven experimental factors, shows that besides causal order-based methods, amortized causal discovery delivers results with comparatively high proximity to the optimal solution.
- Abstract(参考訳): 観測データからの非線形因果発見は、データ生成プロセスで利用される構造方程式の定式化に厳密な識別可能性の仮定を課す。
仮定違反による構造学習手法の評価には厳密で解釈可能なアプローチが必要であり、この手法は推定と基底真理との構造的類似性と因果推論に使用する発見グラフのキャパシティの両方を定量化する。
統合された性能評価フレームワークが欠如していることから,我々は,因果発見の分野に特化して最適解の距離(DOS)を解釈可能な6次元評価指標として導入した。
さらに、実世界のプロセスにインスパイアされた非識別・非線形因果パターンの比率を増大させることで、7つの異なるファミリーからの構造学習アルゴリズムの性能を評価する最初の研究である。
7つの実験要素を組み込んだ大規模シミュレーション研究により,因果的順序に基づく方法に加えて,因果的因果発見が最適解に比較的近い結果をもたらすことが示された。
関連論文リスト
- Differentiable Causal Discovery For Latent Hierarchical Causal Models [19.373348700715578]
非線形潜在階層因果モデルの同定可能性に関する新しい理論的結果を示す。
我々は,そのようなモデルの構造を効率的に推定する,新しい微分可能な因果探索アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-29T09:08:20Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Data-Driven Estimation of Heterogeneous Treatment Effects [15.140272661540655]
異種治療効果推定(ヘテロジニアス・エフェクト・アセスメント・アセスメント・アセスメント・アセスメント・アセスメント・アセスメント)は、経験科学において重要な問題である。
機械学習を用いた不均一な処理効果推定のための最先端データ駆動手法について調査する。
論文 参考訳(メタデータ) (2023-01-16T21:36:49Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
線形および非線形共振の両方を扱う可変デコリレーション正規化器を用いた新しい手法を提案する。
我々は、モデル解釈可能性を高めるために、元の特徴に基づくアソシエーションルールマイニングを用いた新しい表現として、アソシエーションルールを採用する。
論文 参考訳(メタデータ) (2022-09-29T17:44:14Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Evaluating Causal Inference Methods [0.4588028371034407]
我々は、因果推論手法を検証するために、深層生成モデルに基づくフレームワーク、クレデンスを導入する。
我々の研究は、因果推論手法を検証するために、深層生成モデルに基づくフレームワーク、クレデンスを導入している。
論文 参考訳(メタデータ) (2022-02-09T00:21:22Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Structure Learning for Directed Trees [3.1523578265982235]
システムの因果構造を知ることは、科学の多くの分野において基本的な関心事であり、システムの操作下でうまく機能する予測アルゴリズムの設計を支援することができる。
データから構造を学習するために、スコアベースの手法は適合の質に応じて異なるグラフを評価する。
大きな非線形モデルでは、これらは真の因果構造を回復する一般的な保証のない最適化アプローチに依存している。
論文 参考訳(メタデータ) (2021-08-19T18:38:30Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。