論文の概要: Automated conjecturing in mathematics with \emph{TxGraffiti}
- arxiv url: http://arxiv.org/abs/2409.19379v1
- Date: Sat, 28 Sep 2024 15:06:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 23:38:55.314236
- Title: Automated conjecturing in mathematics with \emph{TxGraffiti}
- Title(参考訳): emph{TxGraffiti} を用いた数学における自動推論
- Authors: Randy Davila,
- Abstract要約: emphTxGraffitiは、予想を生成するプロセスを自動化するために開発されたデータ駆動型コンピュータプログラムである。
本稿では,emphTxGraffitiプログラムのルーツを含む,emphTxGraffitiの設計と基本原理について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: \emph{TxGraffiti} is a data-driven, heuristic-based computer program developed to automate the process of generating conjectures across various mathematical domains. Since its creation in 2017, \emph{TxGraffiti} has contributed to numerous mathematical publications, particularly in graph theory. In this paper, we present the design and core principles of \emph{TxGraffiti}, including its roots in the original \emph{Graffiti} program, which pioneered the automation of mathematical conjecturing. We describe the data collection process, the generation of plausible conjectures, and methods such as the \emph{Dalmatian} heuristic for filtering out redundant or transitive conjectures. Additionally, we highlight its contributions to the mathematical literature and introduce a new web-based interface that allows users to explore conjectures interactively. While we focus on graph theory, the techniques demonstrated extend to other areas of mathematics.
- Abstract(参考訳): \emph{TxGraffiti} はデータ駆動のヒューリスティックなコンピュータプログラムで、様々な数学的領域にまたがる予想を生成するプロセスを自動化するために開発された。
2017年の創設以来、特にグラフ理論において、emph{TxGraffiti} は数多くの数学的な出版物に貢献してきた。
本稿では, 数学的推論の自動化の先駆けとなった, もともとの \emph{Graffiti} プログラムのルーツである \emph{TxGraffiti} の設計と基本原理について述べる。
本稿では,データ収集過程,可算予想の生成,および余剰あるいは過渡的な予想をフィルタリングする 'emph{Dalmatian} ヒューリスティックのような手法について述べる。
さらに、数学文献への貢献を強調し、ユーザが対話的に推測を探索できる新しいWebベースのインタフェースを導入する。
グラフ理論に焦点をあてる一方で、実証されたテクニックは数学の他の分野にも及んでいる。
関連論文リスト
- MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code [38.127313175508746]
本稿では, 継続事前学習のための推論ステップを伴って, 数学的コードを生成する新しい手法を提案する。
私たちのアプローチは、高品質な数学的継続事前学習データセットの構築から始まります。
生成されたコードを推論ステップ毎に適用すると、ペアの自然言語推論ステップとその対応するコードからなるデータが得られる。
論文 参考訳(メタデータ) (2024-10-10T17:58:40Z) - Artificial intelligence and machine learning generated conjectures with TxGraffiti [0.0]
TxGraffitiが実装した機械学習とテクニックについて概説する。
また、グラフ理論の予想を探求したい人なら誰でも利用できる新しいオンライン版も発表します。
論文 参考訳(メタデータ) (2024-07-03T01:03:09Z) - MathScale: Scaling Instruction Tuning for Mathematical Reasoning [70.89605383298331]
大規模言語モデル(LLM)は問題解決において顕著な能力を示した。
しかし、数学的な問題を解く能力は依然として不十分である。
高品質な数学的推論データを作成するためのシンプルでスケーラブルな方法であるMathScaleを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:42:59Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - A New Approach Towards Autoformalization [7.275550401145199]
オートフォーマル化(Autoformalization)は、自然言語をプログラムで検証可能な形式言語に変換するタスクである。
研究論文は大量の背景と文脈を必要とする。
本稿では,研究レベルの数学の自己形式化に取り組み,タスクをより容易に,より親しみやすいサブタスクに分割する手法を提案する。
論文 参考訳(メタデータ) (2023-10-12T00:50:24Z) - OntoMath${}^{\mathbf{PRO}}$ 2.0 Ontology: Updates of the Formal Model [68.8204255655161]
主な関心は、Open Linked Dataクラウドにおける数学的ステートメントを表現するための形式モデルの開発である。
提案モデルは、自然言語の数学的テキストから数学的事実を抽出し、これらの事実をLinked Open Dataとして表現するアプリケーションを対象としている。
このモデルは OntoMath$mathrmPRO$ ontology of professional mathematics の新バージョンの開発に使用される。
論文 参考訳(メタデータ) (2023-03-17T20:29:17Z) - Self-Supervised Pretraining of Graph Neural Network for the Retrieval of
Related Mathematical Expressions in Scientific Articles [8.942112181408156]
本稿では,機械学習に基づく数学的表現の検索手法を提案する。
埋め込み学習と自己教師型学習を組み合わせた教師なし表現学習タスクを設計する。
arXiv.orgで発行された90,000以上の出版物から、9900万以上の数学的表現を持つ巨大なデータセットを収集します。
論文 参考訳(メタデータ) (2022-08-22T12:11:30Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
本稿では,中国初の数学的事前学習言語モデル(PLM)を提示することにより,機械の数学的知性向上を目指す。
他の標準のNLPタスクとは異なり、数学的テキストは問題文に数学的用語、記号、公式を含むため理解が難しい。
基礎課程と上級課程の両方からなる数学PLMの学習を改善するための新しいカリキュラム事前学習手法を設計する。
論文 参考訳(メタデータ) (2022-06-13T17:03:52Z) - Math-KG: Construction and Applications of Mathematical Knowledge Graph [2.1828601975620257]
本研究では,パイプライン法と自然言語処理技術によって自動的に構築された数学知識グラフMath-KGを提案する。
提案するMath-KGは,故障解析やセマンティックサーチなど,一連のシーンでコントリビューションを行うことができる。
論文 参考訳(メタデータ) (2022-05-08T03:39:07Z) - Molecule Generation for Drug Design: a Graph Learning Perspective [49.8071944694075]
機械学習、特にグラフ学習は、さまざまな分野にまたがるトランスフォーメーションの影響で認知度が高まっている。
そのような有望な応用の1つは分子設計と発見の領域、特に製薬業界における。
本調査では,分子設計における最先端手法,特に深度グラフ学習技術を取り入れたEmphde novo薬物設計について概観する。
論文 参考訳(メタデータ) (2022-02-18T14:26:23Z) - Generative Language Modeling for Automated Theorem Proving [94.01137612934842]
この研究は、自動定理プロバーの人間に対する大きな制限が言語モデルから生成することで対処できる可能性によって動機づけられている。
本稿ではメタマス形式化言語のための自動証明と証明アシスタント GPT-f を提案し,その性能を解析する。
論文 参考訳(メタデータ) (2020-09-07T19:50:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。