論文の概要: SELP: Generating Safe and Efficient Task Plans for Robot Agents with Large Language Models
- arxiv url: http://arxiv.org/abs/2409.19471v1
- Date: Sat, 28 Sep 2024 22:33:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 23:07:28.750091
- Title: SELP: Generating Safe and Efficient Task Plans for Robot Agents with Large Language Models
- Title(参考訳): SELP:大規模言語モデルを用いたロボットエージェントの安全かつ効率的なタスクプラン生成
- Authors: Yi Wu, Zikang Xiong, Yiran Hu, Shreyash S. Iyengar, Nan Jiang, Aniket Bera, Lin Tan, Suresh Jagannathan,
- Abstract要約: 等価投票、制約付き復号化、ドメイン固有の微調整という3つの重要な洞察を提示する。
等価投票は、複数の線形時間論理(LTL)式の生成とサンプリングによって一貫性を保証する。
制約付き復号法は生成された公式を使って計画の自動回帰推論を実行する。
ドメイン固有の微調整は、特定のタスクドメイン内で安全で効率的なプランを生成するために、LSMをカスタマイズする。
- 参考スコア(独自算出の注目度): 24.22168861692322
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite significant advancements in large language models (LLMs) that enhance robot agents' understanding and execution of natural language (NL) commands, ensuring the agents adhere to user-specified constraints remains challenging, particularly for complex commands and long-horizon tasks. To address this challenge, we present three key insights, equivalence voting, constrained decoding, and domain-specific fine-tuning, which significantly enhance LLM planners' capability in handling complex tasks. Equivalence voting ensures consistency by generating and sampling multiple Linear Temporal Logic (LTL) formulas from NL commands, grouping equivalent LTL formulas, and selecting the majority group of formulas as the final LTL formula. Constrained decoding then uses the generated LTL formula to enforce the autoregressive inference of plans, ensuring the generated plans conform to the LTL. Domain-specific fine-tuning customizes LLMs to produce safe and efficient plans within specific task domains. Our approach, Safe Efficient LLM Planner (SELP), combines these insights to create LLM planners to generate plans adhering to user commands with high confidence. We demonstrate the effectiveness and generalizability of SELP across different robot agents and tasks, including drone navigation and robot manipulation. For drone navigation tasks, SELP outperforms state-of-the-art planners by 10.8% in safety rate (i.e., finishing tasks conforming to NL commands) and by 19.8% in plan efficiency. For robot manipulation tasks, SELP achieves 20.4% improvement in safety rate. Our datasets for evaluating NL-to-LTL and robot task planning will be released in github.com/lt-asset/selp.
- Abstract(参考訳): ロボットエージェントによる自然言語(NL)コマンドの理解と実行を促進する大規模言語モデル(LLM)の大幅な進歩にもかかわらず、エージェントがユーザ指定の制約に準拠することを保証することは、特に複雑なコマンドやロングホライゾンタスクにおいて困難である。
この課題に対処するために,同値投票,制約付き復号化,ドメイン固有の微調整という3つの重要な知見を提示する。
等価投票は、NLコマンドから複数の線形時間論理(LTL)式を生成・サンプリングし、等価LTL式をグループ化し、最終LTL式として多数群を選択することで一貫性を保証する。
制約付き復号法は生成したLTL公式を用いて計画の自動回帰推論を強制し、生成した計画がLTLに準拠していることを保証する。
ドメイン固有の微調整は、特定のタスクドメイン内で安全で効率的なプランを生成するために、LSMをカスタマイズする。
我々のアプローチである Safe Efficient LLM Planner (SELP) はこれらの知見を組み合わせることで,ユーザコマンドに忠実なプランを高い信頼性で生成する LLM Planner を作成する。
ドローンナビゲーションやロボット操作など,さまざまなロボットエージェントやタスクに対してSELPの有効性と汎用性を示す。
ドローンナビゲーションタスクでは、SELPは最先端のプランナーを10.8%、安全率(NLコマンドに準拠したタスクの終了)を19.8%上回る。
ロボット操作タスクでは、SELPは安全率を20.4%向上させる。
NL-to-LTLとロボットタスク計画のためのデータセットをgithub.com/lt-asset/selpでリリースする。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - LaMMA-P: Generalizable Multi-Agent Long-Horizon Task Allocation and Planning with LM-Driven PDDL Planner [9.044939946653002]
言語モデル(LM)は、自然言語を理解する強力な能力を有しており、人間の指示を単純なロボットタスクの詳細な計画に変換するのに効果的である。
本稿では,言語モデル駆動型多エージェントPDDLプランナ(LaMMA-P)を提案する。
LaMMA-Pは、LMの推論能力と従来の探索プランナーの強みを統合し、高い成功率と効率を達成する。
論文 参考訳(メタデータ) (2024-09-30T17:58:18Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
長期計画には不確実性蓄積、計算複雑性、遅延報酬、不完全情報といった課題が伴う。
本研究では,タスク階層を人間の指示から活用し,マルチロボット計画を容易にする手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T14:46:13Z) - TIC: Translate-Infer-Compile for accurate "text to plan" using LLMs and Logical Representations [0.0]
本研究では,自然言語計画タスク要求の計画作成の問題について検討する。
本手法は,LLMを用いて自然言語タスク記述の解釈可能な中間表現を生成する。
中間表現のみを出力するためにLLMを用いると、LLMの誤差が大幅に減少する。
論文 参考訳(メタデータ) (2024-02-09T18:39:13Z) - Formal-LLM: Integrating Formal Language and Natural Language for Controllable LLM-based Agents [39.53593677934238]
大規模言語モデル(LLM)により、AIエージェントは複雑なタスクを解決するためのマルチステッププランを自動的に生成し実行することができる。
しかし、現在のLLMベースのエージェントは、しばしば無効または実行不可能な計画を生成する。
本稿では、自然言語の表現性と形式言語の精度を統合することで、LLMをベースとしたエージェントのための新しい「フォーマルLLM」フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-01T17:30:50Z) - Consolidating Trees of Robotic Plans Generated Using Large Language
Models to Improve Reliability [6.4111574364474215]
LLM(Large Language Models)の固有の確率論的性質は、予測不可能な要素を導入している。
本稿では,多様な現実の要求やシナリオに対して,適切なロボットタスク計画を作成することを目的とした,革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-15T18:01:59Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
As-Needed Decomposition and Planning for Complex Tasks (ADaPT)について紹介する。
ADaPTは、Large Language Modelsがそれらを実行できない場合、複雑なサブタスクを明示的に計画し、分解する。
以上の結果から,ADaPTは強いベースラインを確立した。
論文 参考訳(メタデータ) (2023-11-08T17:59:15Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
事前訓練された大言語モデル(LLM)は、世界に関する手続き的な知識をキャプチャする。
Plan, Eliminate, and Track (PET)フレームワークはタスク記述をハイレベルなサブタスクのリストに変換する。
PETフレームワークは、人間の目標仕様への一般化のために、SOTAよりも15%改善されている。
論文 参考訳(メタデータ) (2023-05-03T20:11:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。