論文の概要: CoT-ST: Enhancing LLM-based Speech Translation with Multimodal Chain-of-Thought
- arxiv url: http://arxiv.org/abs/2409.19510v1
- Date: Sun, 29 Sep 2024 01:48:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:05:09.452293
- Title: CoT-ST: Enhancing LLM-based Speech Translation with Multimodal Chain-of-Thought
- Title(参考訳): CoT-ST:マルチモーダル・チェーン・オブ・サートによるLLM音声翻訳の強化
- Authors: Yexing Du, Ziyang Ma, Yifan Yang, Keqi Deng, Xie Chen, Bo Yang, Yang Xiang, Ming Liu, Bing Qin,
- Abstract要約: 音声言語モデル(SLM)は,音声翻訳タスクにおいて印象的な性能を示した。
本研究では,SLMのチェーン・オブ・シークレット機能を活性化する3段階のトレーニングフレームワークを提案する。
本稿では,マルチモーダルCoTを用いた音声翻訳モデルであるCoT-STを提案する。
- 参考スコア(独自算出の注目度): 33.32415197728357
- License:
- Abstract: Speech Language Models (SLMs) have demonstrated impressive performance on speech translation tasks. However, existing research primarily focuses on direct instruction fine-tuning and often overlooks the inherent reasoning capabilities of SLMs. In this paper, we introduce a three-stage training framework designed to activate the chain-of-thought (CoT) capabilities of SLMs. We propose CoT-ST, a speech translation model that utilizes multimodal CoT to decompose speech translation into sequential steps of speech recognition and translation. We validated the effectiveness of our method on two datasets: the CoVoST-2 dataset and MuST-C dataset. The experimental results demonstrate that CoT-ST outperforms previous state-of-the-art methods, achieving higher BLEU scores (CoVoST-2 en-ja: 30.5->30.8, en-zh: 45.2->47.7, MuST-C en-zh: 19.6->21.2). This work is open sourced at https://github.com/X-LANCE/SLAM-LLM/tree/main/examples/st_covost2 .
- Abstract(参考訳): 音声言語モデル (SLM) は, 音声翻訳作業において顕著な性能を示した。
しかし、既存の研究は主に直接指導の微調整に焦点を当てており、しばしばSLMの本質的な推論能力を見落としている。
本稿では,SLMのチェーン・オブ・シント(CoT)機能を活性化する3段階のトレーニングフレームワークを提案する。
本稿では,マルチモーダルCoTを用いた音声翻訳モデルであるCoT-STを提案する。
提案手法の有効性を,CoVoST-2データセットとMuST-Cデータセットの2つのデータセットで検証した。
実験の結果,CoT-STは従来の最先端手法よりも優れ,BLEUスコアは高い(CoVoST-2 en-ja: 30.5->30.8, en-zh: 45.2->47.7, MuST-C en-zh: 19.6->21.2)。
この作業はhttps://github.com/X-LANCE/SLAM-LLM/tree/main/examples/st_covost2で公開されている。
関連論文リスト
- TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - Pushing the Limits of Zero-shot End-to-End Speech Translation [15.725310520335785]
データ不足とテキストモダリティ間のモダリティギャップは、エンドツーエンド音声翻訳(ST)システムの2つの大きな障害である。
ゼロショットSTの手法であるZeroSwotを導入し、ペアSTデータを使わずにモダリティギャップをブリッジする。
実験の結果,STデータを使わずにモダリティギャップを効果的に塞ぐことが可能であること,MuST-CとCoVoSTで得られた結果が本手法の優位性を示している。
論文 参考訳(メタデータ) (2024-02-16T03:06:37Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - Tuning Large language model for End-to-end Speech Translation [7.297914077124909]
本稿では,E2E-STタスクを最適化した大規模マルチモーダルモデルであるLSTを紹介する。
MuST-C 音声翻訳ベンチマークの実験結果は、En-De/En-Fr/En-Es 言語ペアの LST-13B BLEU スコアが 30.39/41.55/35.33 であり、以前のモデルを超え、新しい最先端技術を確立したことを示している。
論文 参考訳(メタデータ) (2023-10-03T13:43:50Z) - Cross-Modal Multi-Tasking for Speech-to-Text Translation via Hard
Parameter Sharing [72.56219471145232]
ハードパラメータ共有を伴うST/MTマルチタスクフレームワークを提案する。
本手法は,事前処理による音声文のモダリティギャップを低減する。
我々は,注意エンコーダ・デコーダ,コネクショニスト時間分類(CTC),トランスデューサ,共同CTC/アテンションモデルを平均+0.5BLEUで改善することを示す。
論文 参考訳(メタデータ) (2023-09-27T17:48:14Z) - Bridging the Gaps of Both Modality and Language: Synchronous Bilingual
CTC for Speech Translation and Speech Recognition [46.41096278421193]
BiL-CTC+は、ソース言語とターゲット言語とのギャップを埋める。
また,音声認識性能も大幅に向上した。
論文 参考訳(メタデータ) (2023-09-21T16:28:42Z) - Translation-Enhanced Multilingual Text-to-Image Generation [61.41730893884428]
テキスト・ツー・イメージ・ジェネレーション(TTI)の研究は、現在でも主に英語に焦点を当てている。
そこで本研究では,多言語TTIとニューラルマシン翻訳(NMT)のブートストラップmTTIシステムへの応用について検討する。
我々は,mTTIフレームワーク内で多言語テキスト知識を重み付け,統合する新しいパラメータ効率アプローチであるEnsemble Adapter (EnsAd)を提案する。
論文 参考訳(メタデータ) (2023-05-30T17:03:52Z) - Enhancing Speech-to-Speech Translation with Multiple TTS Targets [62.18395387305803]
直接S2STモデルに対する合成対象音声の変更の効果を解析する。
異なるTSシステムから複数のターゲットを持つS2STシステムを協調的に最適化するマルチタスクフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-10T14:33:33Z) - M3ST: Mix at Three Levels for Speech Translation [66.71994367650461]
本稿では,M3ST法を3段階に分けて提案し,拡張学習コーパスの多様性を高める。
ファインチューニングの第1段階では、単語レベル、文レベル、フレームレベルを含む3段階のトレーニングコーパスを混合し、モデル全体を混合データで微調整する。
MuST-C音声翻訳ベンチマークと分析実験により、M3STは現在の強いベースラインより優れ、平均的なBLEU29.9の8方向の最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2022-12-07T14:22:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。