論文の概要: Understanding Clinical Decision-Making in Traditional East Asian Medicine through Dimensionality Reduction: An Empirical Investigation
- arxiv url: http://arxiv.org/abs/2409.19531v1
- Date: Sun, 29 Sep 2024 03:28:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:06:25.386126
- Title: Understanding Clinical Decision-Making in Traditional East Asian Medicine through Dimensionality Reduction: An Empirical Investigation
- Title(参考訳): 従来の東アジア医学におけるディメンダリティ・リダクションによる臨床的意思決定の理解--実証的研究
- Authors: Hyojin Bae, Bongsu Kang, Chang-Eop Kim,
- Abstract要約: 従来の東アジア医学(TEAM)における臨床的意思決定過程について検討した。
本研究では,8原則パターン同定(EPPI)システムに着目し,Shang-Han-Lunの実証データを利用する。
Ext-Intパターンが患者の症状に関する情報を最も多く含んでいるか,最も抽象的で一般化可能な症状情報を示し,適切な処方薬の選択を容易にするか,という3つの仮説を検証した。
- 参考スコア(独自算出の注目度): 5.120567378386615
- License:
- Abstract: This study examines the clinical decision-making processes in Traditional East Asian Medicine (TEAM) by reinterpreting pattern identification (PI) through the lens of dimensionality reduction. Focusing on the Eight Principle Pattern Identification (EPPI) system and utilizing empirical data from the Shang-Han-Lun, we explore the necessity and significance of prioritizing the Exterior-Interior pattern in diagnosis and treatment selection. We test three hypotheses: whether the Ext-Int pattern contains the most information about patient symptoms, represents the most abstract and generalizable symptom information, and facilitates the selection of appropriate herbal prescriptions. Employing quantitative measures such as the abstraction index, cross-conditional generalization performance, and decision tree regression, our results demonstrate that the Exterior-Interior pattern represents the most abstract and generalizable symptom information, contributing to the efficient mapping between symptom and herbal prescription spaces. This research provides an objective framework for understanding the cognitive processes underlying TEAM, bridging traditional medical practices with modern computational approaches. The findings offer insights into the development of AI-driven diagnostic tools in TEAM and conventional medicine, with the potential to advance clinical practice, education, and research.
- Abstract(参考訳): 本研究では,従来の東アジア医学(TEAM)における臨床意思決定過程について,次元減少のレンズを通してパターン識別(PI)を再解釈することにより検討した。
8原則パターン同定(EPPI)システムに着目し,Shang-Han-Lunの実証データを活用することにより,診断と治療選択における外部パターンの優先順位付けの必要性と意義を検討する。
Ext-Intパターンが患者の症状に関する情報を最も多く含んでいるか,最も抽象的で一般化可能な症状情報を示し,適切な処方薬の選択を容易にするか,という3つの仮説を検証した。
解析指標,クロスコンディショナライゼーション性能,決定木回帰などの定量的指標を用いて,Exterior-Interiorパターンは最も抽象的で一般化可能な症状情報を表現し,症状と草本処方薬の効率的なマッピングに寄与することを示した。
本研究は、TEAMの基礎となる認知過程を理解するための客観的な枠組みを提供し、現代の計算手法で伝統的な医療実践をブリッジする。
この発見は、TEAMおよび従来の医学におけるAI駆動診断ツールの開発に関する洞察を与え、臨床実践、教育、研究を進展させる可能性がある。
関連論文リスト
- A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
本研究の目的は,認知診断の現在のモデルについて,機械学習を用いた新たな展開に注目した調査を行うことである。
モデル構造,パラメータ推定アルゴリズム,モデル評価方法,適用例を比較して,認知診断モデルの最近の傾向を概観する。
論文 参考訳(メタデータ) (2024-07-07T18:02:00Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Enhancing Acute Kidney Injury Prediction through Integration of Drug
Features in Intensive Care Units [0.0]
急性腎障害(AKI)予測と腎障害薬との関連は, 治療現場ではまだ検討されていない。
そこで本研究では,患者処方データをモダリティとして活用し,既存のAKI予測モデルを改善する手法を提案する。
論文 参考訳(メタデータ) (2024-01-09T05:42:32Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - SHAMSUL: Systematic Holistic Analysis to investigate Medical
Significance Utilizing Local interpretability methods in deep learning for
chest radiography pathology prediction [1.0138723409205497]
局所的解釈可能なモデル非依存説明法(LIME)、共有付加的説明法(SHAP)、グラディエント重み付きクラス活性化マッピング(Grad-CAM)、レイヤワイド関連伝搬法(LRP)の4つの方法の適用について検討した。
本分析では, 単一ラベルと多ラベルの予測を両方含み, 定量的, 定性的な調査を通じて包括的かつ不偏な評価を行い, 人的専門家のアノテーションと比較した。
論文 参考訳(メタデータ) (2023-07-16T11:10:35Z) - DKINet: Medication Recommendation via Domain Knowledge Informed Deep Learning [12.609882335746859]
医療勧告は、医療の根本的かつ重要な分野である。
これまでの研究は主に電子健康記録から患者の表現を学ぶことに焦点を当ててきた。
本稿では,複雑な臨床症状とドメイン知識の効果的な統合に対処する知識注入モジュールを提案する。
論文 参考訳(メタデータ) (2023-05-31T07:22:15Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Explainable Deep Learning Methods in Medical Image Classification: A
Survey [0.0]
最先端のディープラーニングモデルは、異なるタイプの医療データの分類において、人間レベルの精度を達成した。
これらのモデルは、主に解釈可能性の欠如のために、臨床ではほとんど採用されていない。
ディープラーニングモデルのブラックボックス性は、これらのモデルの意思決定プロセスを説明するための戦略を考案する必要性を高めている。
論文 参考訳(メタデータ) (2022-05-10T09:28:14Z) - ExAID: A Multimodal Explanation Framework for Computer-Aided Diagnosis
of Skin Lesions [4.886872847478552]
ExAID(Explainable AI for Dermatology)は、バイオメディカル画像解析のための新しいフレームワークである。
マルチモーダルな概念に基づく説明を提供する。
他の生体イメージング分野でも同様の応用の基盤となるだろう。
論文 参考訳(メタデータ) (2022-01-04T17:11:28Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。