論文の概要: Tri-Cam: Practical Eye Gaze Tracking via Camera Network
- arxiv url: http://arxiv.org/abs/2409.19554v1
- Date: Sun, 29 Sep 2024 04:43:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:02:34.449258
- Title: Tri-Cam: Practical Eye Gaze Tracking via Camera Network
- Title(参考訳): Tri-Cam: カメラネットワークによる視線追跡
- Authors: Sikai Yang,
- Abstract要約: 本稿では,3つの安価なRGBウェブカメラを用いた,実践的なディープラーニングベースの視線追跡システムであるTri-Camを紹介する。
効率的なトレーニングのための分割ネットワーク構造と、分離された視線追跡タスクを処理するための指定されたネットワーク設計を備えている。
我々は、最先端の商用アイトラッカーであるTobiiに対するTri-Camの評価を行い、より広い自由移動領域をサポートしながら、同等の精度を実現した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As human eyes serve as conduits of rich information, unveiling emotions, intentions, and even aspects of an individual's health and overall well-being, gaze tracking also enables various human-computer interaction applications, as well as insights in psychological and medical research. However, existing gaze tracking solutions fall short at handling free user movement, and also require laborious user effort in system calibration. We introduce Tri-Cam, a practical deep learning-based gaze tracking system using three affordable RGB webcams. It features a split network structure for efficient training, as well as designated network designs to handle the separated gaze tracking tasks. Tri-Cam is also equipped with an implicit calibration module, which makes use of mouse click opportunities to reduce calibration overhead on the user's end. We evaluate Tri-Cam against Tobii, the state-of-the-art commercial eye tracker, achieving comparable accuracy, while supporting a wider free movement area. In conclusion, Tri-Cam provides a user-friendly, affordable, and robust gaze tracking solution that could practically enable various applications.
- Abstract(参考訳): 人間の目は豊かな情報、感情、意図、さらには個人の健康と全体的な健康の面まで明らかにするコンデュットとして機能するので、視線追跡はまた、様々な人間とコンピュータの相互作用の応用や、心理学や医学研究の洞察を可能にしている。
しかし、既存の視線追跡ソリューションは、自由ユーザ運動を扱うのに不足しており、システムキャリブレーションに精力的なユーザー努力も必要である。
本稿では,3つの安価なRGBウェブカメラを用いた,実用的なディープラーニングベースの視線追跡システムであるTri-Camを紹介する。
効率的なトレーニングのための分割ネットワーク構造と、分離された視線追跡タスクを処理するための指定されたネットワーク設計を備えている。
Tri-Camは暗黙のキャリブレーションモジュールも備えており、マウスクリックの機会を利用してユーザーのエンドでのキャリブレーションオーバーヘッドを削減する。
我々は、最先端の商用アイトラッカーであるTobiiに対するTri-Camの評価を行い、より広い自由移動領域をサポートしながら、同等の精度を実現した。
結論として、Tri-Camはユーザーフレンドリーで手頃で堅牢な視線追跡ソリューションを提供し、様々なアプリケーションを有効にする。
関連論文リスト
- Floor extraction and door detection for visually impaired guidance [78.94595951597344]
未知の環境で障害物のない経路を見つけることは、視覚障害者や自律ロボットにとって大きなナビゲーション問題である。
コンピュータビジョンシステムに基づく新しいデバイスは、障害のある人が安全な環境で未知の環境でナビゲートすることの難しさを克服するのに役立つ。
本研究では,視覚障害者のためのナビゲーションシステムの構築につながるセンサとアルゴリズムの組み合わせを提案する。
論文 参考訳(メタデータ) (2024-01-30T14:38:43Z) - Neural Implicit Dense Semantic SLAM [83.04331351572277]
本稿では,屋内シーンのメモリ効率,高密度な3次元形状,セマンティックセマンティックセグメンテーションをオンラインで学習する新しいRGBD vSLAMアルゴリズムを提案する。
私たちのパイプラインは、従来の3Dビジョンベースのトラッキングとループクローズとニューラルフィールドベースのマッピングを組み合わせたものです。
提案アルゴリズムはシーン認識を大幅に向上させ,様々なロボット制御問題を支援する。
論文 参考訳(メタデータ) (2023-04-27T23:03:52Z) - TripletTrack: 3D Object Tracking using Triplet Embeddings and LSTM [0.0]
3Dオブジェクトトラッキングは、自動運転システムにおいて重要なタスクである。
本稿では,3次元物体追跡における3重項埋め込みと動作表現の併用について検討する。
論文 参考訳(メタデータ) (2022-10-28T15:23:50Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
理想化されたビデオストリームやキュレートされたビデオストリームの代わりに,リアルタイムで低解像度のCCTVを処理する,リアルタイムな都市規模のマルチカメラ車両追跡システムを提案する。
私たちの手法は、公共のリーダーボードで上位5人のパフォーマーにランク付けされています。
論文 参考訳(メタデータ) (2022-04-15T12:47:01Z) - ASHA: Assistive Teleoperation via Human-in-the-Loop Reinforcement
Learning [91.58711082348293]
オンラインユーザからのフィードバックからシステムのパフォーマンスに関する強化学習は、この問題に対する自然な解決策である。
このアプローチでは、特にフィードバックが不足している場合には、ループ内の大量のトレーニングデータが必要になる傾向があります。
疎いユーザフィードバックから効率的に学習する階層型ソリューションを提案する。
論文 参考訳(メタデータ) (2022-02-05T02:01:19Z) - Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual
Observations [75.60524561611008]
この研究は、人中心の環境において、よく見られるバンプ、ランプ、階段の広い範囲にわたる知覚的移動を達成するために、スパースな視覚的観察の使用を活用することを目的としている。
まず、関心の均一な面を表すことのできる最小限の視覚入力を定式化し、このような外受容的・固有受容的データを統合した学習フレームワークを提案する。
本研究では, 平地を全方向歩行し, 障害物のある地形を前方移動させるタスクにおいて, 学習方針を検証し, 高い成功率を示す。
論文 参考訳(メタデータ) (2021-09-28T20:25:10Z) - C^3Net: End-to-End deep learning for efficient real-time visual active
camera control [4.09920839425892]
スマートカメラ監視、スマート環境、ドローンなどのアプリケーションにおける自動化されたリアルタイムビジュアルシステムの必要性は、視覚的アクティブな監視と制御のための方法の改善を必要とする。
本稿では,視覚情報からカメラ運動へ直接移行する深層畳み込み型カメラ制御ニューラルネットワークを提案する。
カメラをコントロールし、生のピクセル値から複数のターゲットに従うために、ボックスアノテーションをバウンドすることなく、エンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-07-28T09:31:46Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - Towards Hardware-Agnostic Gaze-Trackers [0.5512295869673146]
本稿では、制約付き視線追跡のための外観に基づく手法として、ディープニューラルネットワークアーキテクチャを提案する。
我々のシステムは、キャリブレーションやデバイス固有の微調整なしで、GazeCaptureデータセット上で1.8073cmの誤差を達成した。
論文 参考訳(メタデータ) (2020-10-11T00:53:57Z) - YOLOpeds: Efficient Real-Time Single-Shot Pedestrian Detection for Smart
Camera Applications [2.588973722689844]
この研究は、スマートカメラアプリケーションにおけるディープラーニングに基づく歩行者検出の効率的な展開のために、精度と速度の良好なトレードオフを達成するという課題に対処する。
分離可能な畳み込みに基づいて計算効率の良いアーキテクチャを導入し、層間密結合とマルチスケール機能融合を提案する。
全体として、YOLOpedsは、既存のディープラーニングモデルよりも86%の速度で、毎秒30フレーム以上のリアルタイム持続的な操作を提供する。
論文 参考訳(メタデータ) (2020-07-27T09:50:11Z) - Three-dimensional Human Tracking of a Mobile Robot by Fusion of Tracking
Results of Two Cameras [0.860255319568951]
OpenPoseは人間の検出に使われる。
この問題に対処するための新しいステレオビジョンフレームワークが提案されている。
提案手法の有効性を目標追跡実験により検証した。
論文 参考訳(メタデータ) (2020-07-03T06:46:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。