Brain Tumor Detection and Classification Using a New Evolutionary
Convolutional Neural Network
- URL: http://arxiv.org/abs/2204.12297v1
- Date: Tue, 26 Apr 2022 13:20:42 GMT
- Title: Brain Tumor Detection and Classification Using a New Evolutionary
Convolutional Neural Network
- Authors: Amin Abdollahi Dehkordi, Mina Hashemi, Mehdi Neshat, Seyedali
Mirjalili, Ali Safaa Sadiq
- Abstract summary: The goal of this study is to employ brain MRI images to distinguish between healthy and unhealthy patients.
Deep learning techniques have recently sparked interest as a means of diagnosing brain tumours more accurately and robustly.
- Score: 18.497065020090062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A definitive diagnosis of a brain tumour is essential for enhancing treatment
success and patient survival. However, it is difficult to manually evaluate
multiple magnetic resonance imaging (MRI) images generated in a clinic.
Therefore, more precise computer-based tumour detection methods are required.
In recent years, many efforts have investigated classical machine learning
methods to automate this process. Deep learning techniques have recently
sparked interest as a means of diagnosing brain tumours more accurately and
robustly. The goal of this study, therefore, is to employ brain MRI images to
distinguish between healthy and unhealthy patients (including tumour tissues).
As a result, an enhanced convolutional neural network is developed in this
paper for accurate brain image classification. The enhanced convolutional
neural network structure is composed of components for feature extraction and
optimal classification. Nonlinear L\'evy Chaotic Moth Flame Optimizer (NLCMFO)
optimizes hyperparameters for training convolutional neural network layers.
Using the BRATS 2015 data set and brain image datasets from Harvard Medical
School, the proposed model is assessed and compared with various optimization
techniques. The optimized CNN model outperforms other models from the
literature by providing 97.4% accuracy, 96.0% sensitivity, 98.6% specificity,
98.4% precision, and 96.6% F1-score, (the mean of the weighted harmonic value
of CNN precision and recall).
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Convolutional neural network classification of cancer cytopathology images: taking breast cancer as an example [40.3927727959038]
This paper introduces an approach utilizing convolutional neural networks (CNNs) for the rapid categorization of pathological images.
It enables the rapid and automatic classification of pathological images into benign and malignant groups.
It demonstrates that the proposed method effectively enhances the accuracy in classifying pathological images of breast cancer.
arXiv Detail & Related papers (2024-04-12T07:08:05Z) - Advancing Brain Tumor Detection: A Thorough Investigation of CNNs,
Clustering, and SoftMax Classification in the Analysis of MRI Images [0.0]
Brain tumors pose a significant global health challenge due to their high prevalence and mortality rates across all age groups.
This study presents a comprehensive investigation into the use of Convolutional Neural Networks (CNNs) for brain tumor detection using Magnetic Resonance Imaging (MRI) images.
The dataset, consisting of MRI scans from both healthy individuals and patients with brain tumors, was processed and fed into the CNN architecture.
arXiv Detail & Related papers (2023-10-26T18:27:20Z) - Streamlining Brain Tumor Classification with Custom Transfer Learning in
MRI Images [1.534667887016089]
Brain tumors are increasingly prevalent, characterized by the uncontrolled spread of aberrant tissues in the brain.
In this study, we propose an efficient solution for classifying brain tumors from MRI images using custom transfer learning networks.
arXiv Detail & Related papers (2023-10-19T19:13:04Z) - An Optimized Ensemble Deep Learning Model For Brain Tumor Classification [3.072340427031969]
Inaccurate identification of brain tumors can significantly diminish life expectancy.
This study introduces an innovative optimization-based deep ensemble approach employing transfer learning (TL) to efficiently classify brain tumors.
Our approach achieves notable accuracy scores, with Xception, ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, and GSWO attaining 99.42%, 98.37%, 98.22%, 98.26%, 99.71%, and 99.76% accuracy, respectively.
arXiv Detail & Related papers (2023-05-22T09:08:59Z) - A deep learning approach for brain tumor detection using magnetic
resonance imaging [0.0]
Brain tumors are considered one of the most dangerous disorders in children and adults.
A convolution neural network (CNN)-based illustration has been proposed for detecting brain tumors from MRI images.
The proposed model has achieved 98.6% accuracy and 97.8% precision score with a low cross-entropy rate.
arXiv Detail & Related papers (2022-10-25T10:13:29Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Topological Optimized Convolutional Visual Recurrent Network for Brain Tumor Segmentation and Classification [1.2499537119440245]
We develop Topological Data Analysis based Improved Persistent Homology and Convolutional Transfer learning and Visual Recurrent learning models for brain tumor segmentation and classification.
When compared to other existing brain tumor segmentation and classification models, the proposed CTVR-EHO and TDA-IPH approaches show high accuracy (99.8%), high recall (99.23%), high precision (99.67%), and high F score (99.59%)
arXiv Detail & Related papers (2022-06-06T07:04:05Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.