論文の概要: Infighting in the Dark: Multi-Labels Backdoor Attack in Federated Learning
- arxiv url: http://arxiv.org/abs/2409.19601v1
- Date: Sun, 29 Sep 2024 07:37:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 22:18:46.546659
- Title: Infighting in the Dark: Multi-Labels Backdoor Attack in Federated Learning
- Title(参考訳): 闇の中でのインファイティング:フェデレートラーニングにおけるマルチラベルバックドアアタック
- Authors: Ye Li, Yanchao Zhao, Chengcheng Zhu, Jiale Zhang,
- Abstract要約: フェデレートラーニング(FL)は、バックドア攻撃に弱いことが示されている。
We propose M2M, a novel multi-label backdoor attack in federated learning (FL)。
この研究は、研究者や開発者にこの潜在的な脅威を警告し、効果的な検出方法の設計を促すことを目的としている。
- 参考スコア(独自算出の注目度): 9.441965281943132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has been demonstrated to be vulnerable to backdoor attacks. As a decentralized machine learning framework, most research focuses on the Single-Label Backdoor Attack (SBA), where adversaries share the same target but neglect the fact that adversaries may be unaware of each other's existence and hold different targets, i.e., Multi-Label Backdoor Attack (MBA). Unfortunately, directly applying prior work to the MBA would not only be ineffective but also potentially mitigate each other. In this paper, we first investigate the limitations of applying previous work to the MBA. Subsequently, we propose M2M, a novel multi-label backdoor attack in federated learning (FL), which adversarially adapts the backdoor trigger to ensure that the backdoored sample is processed as clean target samples in the global model. Our key intuition is to establish a connection between the trigger pattern and the target class distribution, allowing different triggers to activate backdoors along clean activation paths of the target class without concerns about potential mitigation. Extensive evaluations comprehensively demonstrate that M2M outperforms various state-of-the-art attack methods. This work aims to alert researchers and developers to this potential threat and to inspire the design of effective detection methods. Our code will be made available later.
- Abstract(参考訳): フェデレートラーニング(FL)は、バックドア攻撃に弱いことが示されている。
分散機械学習フレームワークとして、ほとんどの研究はSBA(Single-Label Backdoor Attack)に焦点を当てている。
残念なことに、MBAに事前の作業を適用することは、効果がないだけでなく、お互いを緩和する可能性がある。
本稿では,MBAに先行研究を適用する際の限界について検討する。
続いて, 裏口トリガを逆順に適応させて, 裏口サンプルをグローバルモデルにおけるクリーンターゲットとして処理する, 新たな多ラベルバックドア攻撃であるM2Mを提案する。
我々の重要な直感は、トリガーパターンとターゲットクラスの分布との接続を確立することであり、異なるトリガーが潜在的な緩和を心配することなく、ターゲットクラスのクリーンなアクティベーションパスに沿ってバックドアをアクティベートできるようにする。
広範囲な評価により、M2Mは様々な最先端の攻撃方法より優れていることが示された。
この研究は、研究者や開発者にこの潜在的な脅威を警告し、効果的な検出方法の設計を促すことを目的としている。
私たちのコードは後で利用可能になります。
関連論文リスト
- Act in Collusion: A Persistent Distributed Multi-Target Backdoor in Federated Learning [5.91728247370845]
フェデレーション学習は、その分散した性質のため、バックドア攻撃に対して脆弱である。
我々は、分散マルチターゲットバックドアであるフェデレーション学習のためのより実用的な脅威モデルを提案する。
攻撃後30ラウンド、各種顧客からの3つの異なるバックドアのアタック成功率は93%以上である。
論文 参考訳(メタデータ) (2024-11-06T13:57:53Z) - Non-Cooperative Backdoor Attacks in Federated Learning: A New Threat Landscape [7.00762739959285]
プライバシ保護モデルトレーニングのためのフェデレートラーニング(FL)は、バックドア攻撃の影響を受けやすいままである。
本研究は,発展途上のFL景観におけるバックドア攻撃に対する堅牢な防御の必要性を強調した。
論文 参考訳(メタデータ) (2024-07-05T22:03:13Z) - Revisiting Backdoor Attacks against Large Vision-Language Models [76.42014292255944]
本稿では,LVLMの命令チューニングにおけるバックドア攻撃の一般化可能性について実験的に検討する。
以上に基づいて,既存のバックドア攻撃を修正した。
本稿では,従来のシンプルなバックドア戦略でさえ,LVLMに深刻な脅威をもたらすことを指摘する。
論文 参考訳(メタデータ) (2024-06-27T02:31:03Z) - SleeperNets: Universal Backdoor Poisoning Attacks Against Reinforcement Learning Agents [16.350898218047405]
強化学習(Reinforcement Learning, RL)は、現実世界の安全クリティカルなアプリケーションでの利用が増加している分野である。
この研究では、特にステルス性のRL(バックドア中毒)に対するトレーニングタイムアタックを調査します。
我々は、敵の目的と最適な政策を見出す目的を結びつける新しい毒殺の枠組みを定式化する。
論文 参考訳(メタデータ) (2024-05-30T23:31:25Z) - On the Difficulty of Defending Contrastive Learning against Backdoor
Attacks [58.824074124014224]
バックドア攻撃が、特有のメカニズムによってどのように動作するかを示す。
本研究は, 対照的なバックドア攻撃の特異性に合わせて, 防御の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2023-12-14T15:54:52Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z) - Backdoors Stuck At The Frontdoor: Multi-Agent Backdoor Attacks That
Backfire [8.782809316491948]
複数の攻撃者が同時に被害者モデルをバックドアしようとするマルチエージェントバックドア攻撃シナリオについて検討する。
エージェントが集団攻撃の成功率の低いゲームで一貫したバックファイリング現象が観察される。
その結果,実践環境におけるバックドア・ディフェンス研究の再評価の動機となった。
論文 参考訳(メタデータ) (2022-01-28T16:11:40Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
検出不能で強力なバックドア攻撃を確立するために周波数領域を利用する利点を示す。
また、周波数ベースのバックドア攻撃を成功させる2つの防御方法と、攻撃者がそれらを回避できる可能性を示す。
論文 参考訳(メタデータ) (2021-09-12T12:44:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。