Federated Learning from Vision-Language Foundation Models: Theoretical Analysis and Method
- URL: http://arxiv.org/abs/2409.19610v1
- Date: Sun, 29 Sep 2024 08:31:26 GMT
- Title: Federated Learning from Vision-Language Foundation Models: Theoretical Analysis and Method
- Authors: Bikang Pan, Wei Huang, Ye Shi,
- Abstract summary: We construct a theoretical analysis framework for prompt-based federated learning via feature learning theory.
Specifically, we monitor the evolution of signal learning and noise memorization in prompt-based federated learning.
We show that performance can be assessed by the ratio of task-relevant to task-irrelevant coefficients.
- Score: 7.261306002808739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating pretrained vision-language foundation models like CLIP into federated learning has attracted significant attention for enhancing generalization across diverse tasks. Typically, federated learning of vision-language models employs prompt learning to reduce communication and computational costs, i.e., prompt-based federated learning. However, there is limited theoretical analysis to understand the performance of prompt-based federated learning. In this work, we construct a theoretical analysis framework for prompt-based federated learning via feature learning theory. Specifically, we monitor the evolution of signal learning and noise memorization in prompt-based federated learning, demonstrating that performance can be assessed by the ratio of task-relevant to task-irrelevant coefficients. Furthermore, we draw an analogy between income and risk in portfolio optimization and the task-relevant and task-irrelevant terms in feature learning. Leveraging inspiration from portfolio optimization that combining two independent assets will maintain the income while reducing the risk, we introduce two prompts: global prompt and local prompt to construct a prompt portfolio to balance the generalization and personalization. Consequently, we showed the performance advantage of the prompt portfolio and derived the optimal mixing coefficient. These theoretical claims have been further supported by empirical experiments.
Related papers
- On the Comparison between Multi-modal and Single-modal Contrastive Learning [50.74988548106031]
We introduce a theoretical foundation for understanding the differences between multi-modal and single-modal contrastive learning.
We identify the critical factor, which is the signal-to-noise ratio (SNR), that impacts the generalizability in downstream tasks of both multi-modal and single-modal contrastive learning.
Our analysis provides a unified framework that can characterize the optimization and generalization of both single-modal and multi-modal contrastive learning.
arXiv Detail & Related papers (2024-11-05T06:21:17Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - A Theory of Emergent In-Context Learning as Implicit Structure Induction [8.17811111226145]
Scaling large language models leads to an emergent capacity to learn in-context from example demonstrations.
We argue that in-context learning relies on recombination of compositional operations found in natural language data.
We show how in-context learning is supported by a representation of the input's compositional structure.
arXiv Detail & Related papers (2023-03-14T15:24:05Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
We prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations.
Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem.
arXiv Detail & Related papers (2022-11-26T21:02:09Z) - Less is More: Rethinking Few-Shot Learning and Recurrent Neural Nets [2.824895388993495]
We provide theoretical guarantees for reliable learning under the information-theoretic AEP.
We then focus on a highly efficient recurrent neural net (RNN) framework and propose a reduced-entropy algorithm for few-shot learning.
Our experimental results demonstrate significant potential for improving learning models' sample efficiency, generalization, and time complexity.
arXiv Detail & Related papers (2022-09-28T17:33:11Z) - Towards a General Pre-training Framework for Adaptive Learning in MOOCs [37.570119583573955]
We propose a unified framework based on data observation and learning style analysis, properly leveraging heterogeneous learning elements.
We find that course structures, text, and knowledge are helpful for modeling and inherently coherent to student non-sequential learning behaviors.
arXiv Detail & Related papers (2022-07-18T13:18:39Z) - Which Mutual-Information Representation Learning Objectives are
Sufficient for Control? [80.2534918595143]
Mutual information provides an appealing formalism for learning representations of data.
This paper formalizes the sufficiency of a state representation for learning and representing the optimal policy.
Surprisingly, we find that two of these objectives can yield insufficient representations given mild and common assumptions on the structure of the MDP.
arXiv Detail & Related papers (2021-06-14T10:12:34Z) - Off-Policy Imitation Learning from Observations [78.30794935265425]
Learning from Observations (LfO) is a practical reinforcement learning scenario from which many applications can benefit.
We propose a sample-efficient LfO approach that enables off-policy optimization in a principled manner.
Our approach is comparable with state-of-the-art locomotion in terms of both sample-efficiency and performance.
arXiv Detail & Related papers (2021-02-25T21:33:47Z) - Efficient Reinforcement Learning in Resource Allocation Problems Through
Permutation Invariant Multi-task Learning [6.247939901619901]
We show that in certain settings, the available data can be dramatically increased through a form of multi-task learning.
We provide a theoretical performance bound for the gain in sample efficiency under this setting.
This motivates a new approach to multi-task learning, which involves the design of an appropriate neural network architecture and a prioritized task-sampling strategy.
arXiv Detail & Related papers (2021-02-18T14:13:02Z) - Provable Representation Learning for Imitation Learning via Bi-level
Optimization [60.059520774789654]
A common strategy in modern learning systems is to learn a representation that is useful for many tasks.
We study this strategy in the imitation learning setting for Markov decision processes (MDPs) where multiple experts' trajectories are available.
We instantiate this framework for the imitation learning settings of behavior cloning and observation-alone.
arXiv Detail & Related papers (2020-02-24T21:03:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.