An Empirical Study of Federated Prompt Learning for Vision Language Model
- URL: http://arxiv.org/abs/2505.23024v1
- Date: Thu, 29 May 2025 03:09:15 GMT
- Title: An Empirical Study of Federated Prompt Learning for Vision Language Model
- Authors: Zhihao Wang, Wenke Huang, Tian Chen, Zekun Shi, Guancheng Wan, Yu Qiao, Bin Yang, Jian Wang, Bing Li, Mang Ye,
- Abstract summary: This paper systematically investigates behavioral differences between language prompt learning and vision prompt learning.<n>We conduct experiments to evaluate the impact of various fl and prompt configurations, such as client scale, aggregation strategies, and prompt length.<n>We explore strategies for enhancing prompt learning in complex scenarios where label skew and domain shift coexist.
- Score: 50.73746120012352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Vision Language Model (VLM) excels in aligning vision and language representations, and prompt learning has emerged as a key technique for adapting such models to downstream tasks. However, the application of prompt learning with VLM in federated learning (\fl{}) scenarios remains underexplored. This paper systematically investigates the behavioral differences between language prompt learning (LPT) and vision prompt learning (VPT) under data heterogeneity challenges, including label skew and domain shift. We conduct extensive experiments to evaluate the impact of various \fl{} and prompt configurations, such as client scale, aggregation strategies, and prompt length, to assess the robustness of Federated Prompt Learning (FPL). Furthermore, we explore strategies for enhancing prompt learning in complex scenarios where label skew and domain shift coexist, including leveraging both prompt types when computational resources allow. Our findings offer practical insights into optimizing prompt learning in federated settings, contributing to the broader deployment of VLMs in privacy-preserving environments.
Related papers
- Weighted Multi-Prompt Learning with Description-free Large Language Model Distillation [1.3381749415517021]
New approaches leveraging Large Language Models (LLM) in prompts have been proposed, enhancing robustness to unseen and diverse data.<n>Existing methods typically extract text-based responses (i.e., descriptions) from LLM to incorporate into prompts.<n>We propose Description-free Multi-prompt Learning(DeMul), a novel method that eliminates the process of extracting descriptions and instead directly distills knowledge from LLM into prompts.
arXiv Detail & Related papers (2025-07-09T07:55:25Z) - Unlocking the Capabilities of Vision-Language Models for Generalizable and Explainable Deepfake Detection [18.125287697902813]
Current vision-language models (VLMs) have demonstrated remarkable capabilities in understanding multimodal data, but their potential remains underexplored for deepfake detection.<n>We present a novel paradigm that unlocksVLMs' potential capabilities through three components.
arXiv Detail & Related papers (2025-03-19T03:20:03Z) - Use Me Wisely: AI-Driven Assessment for LLM Prompting Skills Development [5.559706293891474]
Large language model (LLM)-powered chatbots have become popular across various domains, supporting a range of tasks and processes.<n>Yet, prompting is highly task- and domain-dependent, limiting the effectiveness of generic approaches.<n>In this study, we explore whether LLM-based methods can facilitate learning assessments by using ad-hoc guidelines and a minimal number of annotated prompt samples.
arXiv Detail & Related papers (2025-03-04T11:56:33Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
We propose a training-free method to inject visual prompts into Multimodal Large Language Models (MLLMs)<n>We optimize a learnable latent variable based on an energy function, enhancing the strength of referring regions in the attention map.<n>Our method offers a promising direction for integrating referring abilities into MLLMs, and supports referring with box, mask, scribble and point.
arXiv Detail & Related papers (2024-07-31T11:40:29Z) - A Lost Opportunity for Vision-Language Models: A Comparative Study of Online Test-Time Adaptation for Vision-Language Models [3.0495235326282186]
In deep learning, maintaining robustness against distribution shifts is critical.
This work explores a broad range of possibilities to adapt vision-language foundation models at test-time.
arXiv Detail & Related papers (2024-05-23T18:27:07Z) - In-context Prompt Learning for Test-time Vision Recognition with Frozen Vision-language Model [13.983810804606264]
We propose In-Context Prompt Learning (InCPL) for test-time visual recognition tasks.
InCPL associates a new test sample with very few labeled examples as context information.
We introduce a context-aware unsupervised loss to optimize visual prompts tailored to test samples.
arXiv Detail & Related papers (2024-03-10T08:15:51Z) - Vision-Language Models Provide Promptable Representations for Reinforcement Learning [67.40524195671479]
We propose a novel approach that uses the vast amounts of general and indexable world knowledge encoded in vision-language models (VLMs) pre-trained on Internet-scale data for embodied reinforcement learning (RL)
We show that our approach can use chain-of-thought prompting to produce representations of common-sense semantic reasoning, improving policy performance in novel scenes by 1.5 times.
arXiv Detail & Related papers (2024-02-05T00:48:56Z) - Text-driven Prompt Generation for Vision-Language Models in Federated
Learning [24.005620820818756]
Our work proposes Federated Text-driven Prompt Generation (FedTPG)
FedTPG learns a unified prompt generation network across multiple remote clients in a scalable manner.
Our comprehensive empirical evaluations on nine diverse image classification datasets show that our method is superior to existing federated prompt learning methods.
arXiv Detail & Related papers (2023-10-09T19:57:24Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
We propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations.
Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes.
arXiv Detail & Related papers (2022-10-06T17:59:56Z) - Prompt-Learning for Fine-Grained Entity Typing [40.983849729537795]
We investigate the application of prompt-learning on fine-grained entity typing in fully supervised, few-shot and zero-shot scenarios.
We propose a self-supervised strategy that carries out distribution-level optimization in prompt-learning to automatically summarize the information of entity types.
arXiv Detail & Related papers (2021-08-24T09:39:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.