Underwater Organism Color Enhancement via Color Code Decomposition, Adaptation and Interpolation
- URL: http://arxiv.org/abs/2409.19685v1
- Date: Sun, 29 Sep 2024 12:24:34 GMT
- Title: Underwater Organism Color Enhancement via Color Code Decomposition, Adaptation and Interpolation
- Authors: Xiaofeng Cong, Jing Zhang, Yeying Jin, Junming Hou, Yu Zhao, Jie Gui, James Tin-Yau Kwok, Yuan Yan Tang,
- Abstract summary: We propose a method called textitColorCode, which enhances underwater images while offering a range controllable color outputs.
Our approach involves recovering an underwater image to a reference enhanced image through supervised training and decomposing it into color and content codes.
The color code is explicitly constrained to follow a Gaussian distribution, allowing for efficient sampling and inference.
- Score: 24.96772289126242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underwater images often suffer from quality degradation due to absorption and scattering effects. Most existing underwater image enhancement algorithms produce a single, fixed-color image, limiting user flexibility and application. To address this limitation, we propose a method called \textit{ColorCode}, which enhances underwater images while offering a range of controllable color outputs. Our approach involves recovering an underwater image to a reference enhanced image through supervised training and decomposing it into color and content codes via self-reconstruction and cross-reconstruction. The color code is explicitly constrained to follow a Gaussian distribution, allowing for efficient sampling and interpolation during inference. ColorCode offers three key features: 1) color enhancement, producing an enhanced image with a fixed color; 2) color adaptation, enabling controllable adjustments of long-wavelength color components using guidance images; and 3) color interpolation, allowing for the smooth generation of multiple colors through continuous sampling of the color code. Quantitative and visual evaluations on popular and challenging benchmark datasets demonstrate the superiority of ColorCode over existing methods in providing diverse, controllable, and color-realistic enhancement results. The source code is available at https://github.com/Xiaofeng-life/ColorCode.
Related papers
- FDCE-Net: Underwater Image Enhancement with Embedding Frequency and Dual Color Encoder [49.79611204954311]
Underwater images often suffer from various issues such as low brightness, color shift, blurred details, and noise due to absorption light and scattering caused by water and suspended particles.
Previous underwater image enhancement (UIE) methods have primarily focused on spatial domain enhancement, neglecting the frequency domain information inherent in the images.
arXiv Detail & Related papers (2024-04-27T15:16:34Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) is a multi-modal colorization method that leverages the pre-trained Stable Diffusion (SD) model.
We present an effective way to encode user strokes to enable precise local color manipulation.
We also introduce a novel module based on self-attention and a content-guided deformable autoencoder to address the long-standing issues of color overflow and inaccurate coloring.
arXiv Detail & Related papers (2024-02-16T17:51:13Z) - DiffColor: Toward High Fidelity Text-Guided Image Colorization with
Diffusion Models [12.897939032560537]
We propose a new method called DiffColor to recover vivid colors conditioned on a prompt text.
We first fine-tune a pre-trained text-to-image model to generate colorized images using a CLIP-based contrastive loss.
Then we try to obtain an optimized text embedding aligning the colorized image and the text prompt, and a fine-tuned diffusion model enabling high-quality image reconstruction.
Our method can produce vivid and diverse colors with a few iterations, and keep the structure and background intact while having colors well-aligned with the target language guidance.
arXiv Detail & Related papers (2023-08-03T09:38:35Z) - Improving Video Colorization by Test-Time Tuning [79.67548221384202]
We propose an effective method, which aims to enhance video colorization through test-time tuning.
By exploiting the reference to construct additional training samples during testing, our approach achieves a performance boost of 13 dB in PSNR on average.
arXiv Detail & Related papers (2023-06-25T05:36:40Z) - DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders [19.560271615736212]
DDColor is an end-to-end method with dual decoders for image colorization.
Our approach includes a pixel decoder and a query-based color decoder.
Our two decoders work together to establish correlations between color and multi-scale semantic representations.
arXiv Detail & Related papers (2022-12-22T11:17:57Z) - Towards Vivid and Diverse Image Colorization with Generative Color Prior [17.087464490162073]
Recent deep-learning-based methods could automatically colorize images at a low cost.
We aim at recovering vivid colors by leveraging the rich and diverse color priors encapsulated in a pretrained Generative Adversarial Networks (GAN)
Thanks to the powerful generative color prior and delicate designs, our method could produce vivid colors with a single forward pass.
arXiv Detail & Related papers (2021-08-19T17:49:21Z) - Underwater Image Enhancement via Medium Transmission-Guided Multi-Color
Space Embedding [88.46682991985907]
We present an underwater image enhancement network via medium transmission-guided multi-color space embedding, called Ucolor.
Our network can effectively improve the visual quality of underwater images by exploiting multiple color spaces embedding.
arXiv Detail & Related papers (2021-04-27T07:35:30Z) - In&Out : Diverse Image Outpainting via GAN Inversion [89.84841983778672]
Image outpainting seeks for a semantically consistent extension of the input image beyond its available content.
In this work, we formulate the problem from the perspective of inverting generative adversarial networks.
Our generator renders micro-patches conditioned on their joint latent code as well as their individual positions in the image.
arXiv Detail & Related papers (2021-04-01T17:59:10Z) - Learning to Structure an Image with Few Colors [59.34619548026885]
We propose a color quantization network, ColorCNN, which learns to structure the images from the classification loss in an end-to-end manner.
With only a 1-bit color space (i.e., two colors), the proposed network achieves 82.1% top-1 accuracy on the CIFAR10 dataset.
For applications, when encoded with PNG, the proposed color quantization shows superiority over other image compression methods in the extremely low bit-rate regime.
arXiv Detail & Related papers (2020-03-17T17:56:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.