Pancharatnam phase as an entanglement witness for quantum gravity in dual Stern-Gerlach interferometers
- URL: http://arxiv.org/abs/2409.19692v2
- Date: Mon, 28 Oct 2024 07:49:08 GMT
- Title: Pancharatnam phase as an entanglement witness for quantum gravity in dual Stern-Gerlach interferometers
- Authors: Samuel Moukouri,
- Abstract summary: Entanglement plays a central role in the fundamental tests and practical applications of quantum mechanics.
I study the dual spin-one-half Stern-Gerlach interferometers and show that the Pancharatnam phase is a tool that distinguishes semiclassical from quantum gravity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement plays a central role in the fundamental tests and practical applications of quantum mechanics. Because entanglement is a feature unique to quantum systems, its observations provide evidence of quantumness. Hence, if gravity can generate entanglement between quantum superpositions, this indicates that quantum amplitudes are field sources and that gravity is quantum. I study the dual spin-one-half Stern-Gerlach interferometers and show that the Pancharatnam phase is a tool that qualitatively distinguishes semiclassical from quantum gravity. The semiclassical evolution is equivalent to that of two independent interferometers in an external field. In this case, a phase jump was observed, as expected from the geodesic rule, which dictates the noncyclic evolution in the Bloch sphere. By contrast, in the quantum case, the quantum amplitudes are the sources of the gravitational field, inducing entanglement between the two interferometers, and the phase is continuous.
Related papers
- Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
We report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator.
Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics.
arXiv Detail & Related papers (2024-10-20T13:27:13Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Mechanism for the quantum natured gravitons to entangle masses [0.0]
This paper points out the importance of the quantum nature of the gravitational interaction with matter in a linearized theory of quantum gravity induced entanglement of masses (QGEM)
We will show how the quantum interaction entangles the steady states of a closed system of two test masses placed in the harmonic traps, and how such a quantum matter-matter interaction emerges from an underlying quantum gravitational field.
arXiv Detail & Related papers (2022-01-10T19:00:06Z) - Dynamics of quantum resources in regular and Majorana fermion systems [0.0]
We study the dynamics of quantum resources for two solid-state fermionic quantum devices.
Our results illustrate the use of quantum information-theoretic measures to characterize the role of quantum resources in fermion systems.
arXiv Detail & Related papers (2021-08-02T23:10:29Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Experimental measurement of the divergent quantum metric of an
exceptional point [10.73176455098217]
We report the first experimental measurement of the quantum metric in a non-Hermitian system.
The specific platform under study is an organic microcavity with exciton-polariton eigenstates, which demonstrate exceptional points.
arXiv Detail & Related papers (2020-11-24T11:31:03Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Quantum manifestations of homogeneous and inhomogeneous oscillation
suppression states [10.582441516469856]
Inhomogeneous oscillation suppression state (or the oscillation death state) does not occur in the classical limit.
In the deep quantum regime we discover an oscillation death-like state which is manifested in the phase space through the symmetry-breaking bifurcation of Wigner function.
Our results hint towards the possibility of the transition from quantum amplitude death to oscillation death state through the "quantum" Turing-type bifurcation.
arXiv Detail & Related papers (2020-09-21T17:20:29Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.