2D-TPE: Two-Dimensional Positional Encoding Enhances Table Understanding for Large Language Models
- URL: http://arxiv.org/abs/2409.19700v3
- Date: Fri, 18 Oct 2024 10:15:29 GMT
- Title: 2D-TPE: Two-Dimensional Positional Encoding Enhances Table Understanding for Large Language Models
- Authors: Jia-Nan Li, Jian Guan, Wei Wu, Zhengtao Yu, Rui Yan,
- Abstract summary: Existing methods often flatten the two-dimensional (2D) table structure into a sequence of tokens.
2D-TPE effectively mitigates the risk of losing essential spatial information while preserving computational efficiency.
Extensive experiments across five benchmarks demonstrate that 2D-TPE outperforms strong baselines.
- Score: 48.123582712115336
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Tables are ubiquitous across various domains for concisely representing structured information. Empowering large language models (LLMs) to reason over tabular data represents an actively explored direction. However, since typical LLMs only support one-dimensional~(1D) inputs, existing methods often flatten the two-dimensional~(2D) table structure into a sequence of tokens, which can severely disrupt the spatial relationships and result in an inevitable loss of vital contextual information. In this paper, we first empirically demonstrate the detrimental impact of such flattening operations on the performance of LLMs in capturing the spatial information of tables through two elaborate proxy tasks. Subsequently, we introduce a simple yet effective positional encoding method, termed ``2D-TPE'' (Two-Dimensional Table Positional Encoding), to address this challenge. 2D-TPE enables each attention head to dynamically select a permutation order of tokens within the context for attending to them, where each permutation represents a distinct traversal mode for the table, such as column-wise or row-wise traversal. 2D-TPE effectively mitigates the risk of losing essential spatial information while preserving computational efficiency, thus better preserving the table structure. Extensive experiments across five benchmarks demonstrate that 2D-TPE outperforms strong baselines, underscoring the importance of preserving the table structure for accurate table comprehension. Comprehensive analysis further reveals the substantially better scalability of 2D-TPE to large tables than baselines.
Related papers
- TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG is a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding.
TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs.
Our results demonstrate that TableRAG achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
arXiv Detail & Related papers (2024-10-07T04:15:02Z) - TDeLTA: A Light-weight and Robust Table Detection Method based on
Learning Text Arrangement [34.73880086005418]
We propose a novel, light-weighted and robust Table Detection method based on Learning Text Arrangement, namely TDeLTA.
To locate the tables precisely, we design a text-classification task, classifying the text blocks into 4 categories according to their semantic roles in the tables.
Compared to several state-of-the-art methods, TDeLTA achieves competitive results with only 3.1M model parameters on the large-scale public datasets.
arXiv Detail & Related papers (2023-12-18T09:18:43Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation [7.69801337810352]
We conduct parameter-efficient fine-tuning on the LLaMA2 model.
Our approach involves injecting reasoning information into the input by emphasizing table-specific row data.
On both the FetaQA and QTSumm datasets, our approach achieved state-of-the-art results.
arXiv Detail & Related papers (2023-11-15T12:02:52Z) - SEMv2: Table Separation Line Detection Based on Instance Segmentation [96.36188168694781]
We propose an accurate table structure recognizer, termed SEMv2 (SEM: Split, Embed and Merge)
We address the table separation line instance-level discrimination problem and introduce a table separation line detection strategy based on conditional convolution.
To comprehensively evaluate the SEMv2, we also present a more challenging dataset for table structure recognition, dubbed iFLYTAB.
arXiv Detail & Related papers (2023-03-08T05:15:01Z) - TGRNet: A Table Graph Reconstruction Network for Table Structure
Recognition [76.06530816349763]
We propose an end-to-end trainable table graph reconstruction network (TGRNet) for table structure recognition.
Specifically, the proposed method has two main branches, a cell detection branch and a cell logical location branch, to jointly predict the spatial location and the logical location of different cells.
arXiv Detail & Related papers (2021-06-20T01:57:05Z) - Multi-Type-TD-TSR -- Extracting Tables from Document Images using a
Multi-stage Pipeline for Table Detection and Table Structure Recognition:
from OCR to Structured Table Representations [63.98463053292982]
The recognition of tables consists of two main tasks, namely table detection and table structure recognition.
Recent work shows a clear trend towards deep learning approaches coupled with the use of transfer learning for the task of table structure recognition.
We present a multistage pipeline named Multi-Type-TD-TSR, which offers an end-to-end solution for the problem of table recognition.
arXiv Detail & Related papers (2021-05-23T21:17:18Z) - Identifying Table Structure in Documents using Conditional Generative
Adversarial Networks [0.0]
In many industries and in academic research, information is primarily transmitted in the form of unstructured documents.
We propose a top-down approach, first using a conditional generative adversarial network to map a table image into a standardised skeleton' table form.
We then deriving latent table structure using xy-cut projection and Genetic Algorithm optimisation.
arXiv Detail & Related papers (2020-01-13T20:42:40Z) - Table Structure Extraction with Bi-directional Gated Recurrent Unit
Networks [5.350788087718877]
This paper proposes a robust deep learning based approach to extract rows and columns from a detected table in document images with a high precision.
We have benchmarked our system on publicly available UNLV as well as ICDAR 2013 datasets on which it outperformed the state-of-the-art table structure extraction systems by a significant margin.
arXiv Detail & Related papers (2020-01-08T13:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.