Tabular Data Understanding with LLMs: A Survey of Recent Advances and Challenges
- URL: http://arxiv.org/abs/2508.00217v1
- Date: Thu, 31 Jul 2025 23:41:31 GMT
- Title: Tabular Data Understanding with LLMs: A Survey of Recent Advances and Challenges
- Authors: Xiaofeng Wu, Alan Ritter, Wei Xu,
- Abstract summary: This paper introduces key concepts through a taxonomy of tabular input representations and an introduction of table understanding tasks.<n>Tables are two-dimensional, encompassing formats that range from well-structured database tables to complex, multi-layered spreadsheets, each with different purposes.<n>We highlight several critical gaps in the field that indicate the need for further research.
- Score: 22.054723113358865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tables have gained significant attention in large language models (LLMs) and multimodal large language models (MLLMs) due to their complex and flexible structure. Unlike linear text inputs, tables are two-dimensional, encompassing formats that range from well-structured database tables to complex, multi-layered spreadsheets, each with different purposes. This diversity in format and purpose has led to the development of specialized methods and tasks, instead of universal approaches, making navigation of table understanding tasks challenging. To address these challenges, this paper introduces key concepts through a taxonomy of tabular input representations and an introduction of table understanding tasks. We highlight several critical gaps in the field that indicate the need for further research: (1) the predominance of retrieval-focused tasks that require minimal reasoning beyond mathematical and logical operations; (2) significant challenges faced by models when processing complex table structures, large-scale tables, length context, or multi-table scenarios; and (3) the limited generalization of models across different tabular representations and formats.
Related papers
- TableReasoner: Advancing Table Reasoning Framework with Large Language Models [8.435221919975744]
We propose a large language model (LLM)-powered and programming-based table reasoning framework, named TableReasoner.<n>It models a table using the schema that combines structural and semantic representations, enabling holistic understanding and efficient processing of large tables.<n>Our system achieves first place in both subtasks of SemEval-2025 Task 8.
arXiv Detail & Related papers (2025-07-10T06:16:51Z) - Multimodal Tabular Reasoning with Privileged Structured Information [67.40011423365712]
We introduce TabUlar Reasoning with Bridged infOrmation (sc Turbo)<n>sc Turbo benefits from a structure-aware reasoning trace generator based on DeepSeek-R1.<n>sc Turbo achieves state-of-the-art performance ($+7.2%$ vs. previous SOTA) across multiple datasets.
arXiv Detail & Related papers (2025-06-04T15:46:30Z) - Enhancing Large Vision-Language Models with Layout Modality for Table Question Answering on Japanese Annual Securities Reports [4.2134954427867]
We propose a method to enhance LVLM-based table understanding by incorporating in-table textual content and layout features.<n> Experimental results demonstrate that these auxiliary modalities significantly improve performance.
arXiv Detail & Related papers (2025-05-23T08:36:22Z) - Scalable Representation Learning for Multimodal Tabular Transactions [14.18267117657451]
We present an innovative and scalable solution to these challenges.
We propose a parameter efficient decoder that interleaves transaction and text modalities.
We validate the efficacy of our solution on a large-scale dataset of synthetic payments transactions.
arXiv Detail & Related papers (2024-10-10T12:18:42Z) - TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG is a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding.<n>TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs.<n>Our results demonstrate that TableRAG achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
arXiv Detail & Related papers (2024-10-07T04:15:02Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
Large Language Models (LLMs) often do not perform well on queries that require the aggregation of information across texts.
TACT contains challenging instructions that demand stitching information scattered across one or more texts.
We construct this dataset by leveraging an existing dataset of texts and their associated tables.
We demonstrate that all contemporary LLMs perform poorly on this dataset, achieving an accuracy below 38%.
arXiv Detail & Related papers (2024-06-05T20:32:56Z) - QFMTS: Generating Query-Focused Summaries over Multi-Table Inputs [63.98556480088152]
Table summarization is a crucial task aimed at condensing information into concise and comprehensible textual summaries.
We propose a novel method to address these limitations by introducing query-focused multi-table summarization.
Our approach, which comprises a table serialization module, a summarization controller, and a large language model, generates query-dependent table summaries tailored to users' information needs.
arXiv Detail & Related papers (2024-05-08T15:05:55Z) - Evaluating LLMs' Mathematical Reasoning in Financial Document Question
Answering [53.56653281752486]
This study explores Large Language Models' mathematical reasoning on four financial question-answering datasets.
We focus on sensitivity to table complexity and performance variations with an increasing number of arithmetic reasoning steps.
We introduce a novel prompting technique tailored to semi-structured documents, matching or outperforming other baselines in performance.
arXiv Detail & Related papers (2024-02-17T05:10:18Z) - Large Language Model for Table Processing: A Survey [18.32332372134988]
This survey provides a comprehensive overview of table-related tasks.
It covers traditional tasks like table question answering as well as emerging fields such as spreadsheet manipulation and table data analysis.
arXiv Detail & Related papers (2024-02-04T00:47:53Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.