Adaptive Event-triggered Reinforcement Learning Control for Complex Nonlinear Systems
- URL: http://arxiv.org/abs/2409.19769v1
- Date: Sun, 29 Sep 2024 20:42:19 GMT
- Title: Adaptive Event-triggered Reinforcement Learning Control for Complex Nonlinear Systems
- Authors: Umer Siddique, Abhinav Sinha, Yongcan Cao,
- Abstract summary: We propose an adaptive event-triggered reinforcement learning control for continuous-time nonlinear systems.
We show that accurate and efficient determination of triggering conditions is possible without the need for explicit learning triggering conditions.
- Score: 2.08099858257632
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose an adaptive event-triggered reinforcement learning control for continuous-time nonlinear systems, subject to bounded uncertainties, characterized by complex interactions. Specifically, the proposed method is capable of jointly learning both the control policy and the communication policy, thereby reducing the number of parameters and computational overhead when learning them separately or only one of them. By augmenting the state space with accrued rewards that represent the performance over the entire trajectory, we show that accurate and efficient determination of triggering conditions is possible without the need for explicit learning triggering conditions, thereby leading to an adaptive non-stationary policy. Finally, we provide several numerical examples to demonstrate the effectiveness of the proposed approach.
Related papers
- Actively Learning Reinforcement Learning: A Stochastic Optimal Control Approach [3.453622106101339]
We propose a framework towards achieving two intertwined objectives: (i) equipping reinforcement learning with active exploration and deliberate information gathering, and (ii) overcoming the computational intractability of optimal control law.
We approach both objectives by using reinforcement learning to compute the optimal control law.
Unlike fixed exploration and exploitation balance, caution and probing are employed automatically by the controller in real-time, even after the learning process is terminated.
arXiv Detail & Related papers (2023-09-18T18:05:35Z) - Resilient Constrained Learning [94.27081585149836]
This paper presents a constrained learning approach that adapts the requirements while simultaneously solving the learning task.
We call this approach resilient constrained learning after the term used to describe ecological systems that adapt to disruptions by modifying their operation.
arXiv Detail & Related papers (2023-06-04T18:14:18Z) - Learning Stochastic Parametric Differentiable Predictive Control
Policies [2.042924346801313]
We present a scalable alternative called parametric differentiable predictive control (SP-DPC) for unsupervised learning of neural control policies.
SP-DPC is formulated as a deterministic approximation to the parametric constrained optimal control problem.
We provide theoretical probabilistic guarantees for policies learned via the SP-DPC method on closed-loop constraints and chance satisfaction.
arXiv Detail & Related papers (2022-03-02T22:46:32Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
offline reinforcement learning enables learning from a fixed dataset, without further interactions with the environment.
We propose a framework that supports learning a flexible yet well-regularized fully-implicit policy.
Experiments and ablation study on the D4RL dataset validate our framework and the effectiveness of our algorithmic designs.
arXiv Detail & Related papers (2022-02-19T20:22:04Z) - State Augmented Constrained Reinforcement Learning: Overcoming the
Limitations of Learning with Rewards [88.30521204048551]
A common formulation of constrained reinforcement learning involves multiple rewards that must individually accumulate to given thresholds.
We show a simple example in which the desired optimal policy cannot be induced by any weighted linear combination of rewards.
This work addresses this shortcoming by augmenting the state with Lagrange multipliers and reinterpreting primal-dual methods.
arXiv Detail & Related papers (2021-02-23T21:07:35Z) - Improper Learning with Gradient-based Policy Optimization [62.50997487685586]
We consider an improper reinforcement learning setting where the learner is given M base controllers for an unknown Markov Decision Process.
We propose a gradient-based approach that operates over a class of improper mixtures of the controllers.
arXiv Detail & Related papers (2021-02-16T14:53:55Z) - The Impact of Data on the Stability of Learning-Based Control- Extended
Version [63.97366815968177]
We propose a Lyapunov-based measure for quantifying the impact of data on the certifiable control performance.
By modeling unknown system dynamics through Gaussian processes, we can determine the interrelation between model uncertainty and satisfaction of stability conditions.
arXiv Detail & Related papers (2020-11-20T19:10:01Z) - Learning Constrained Adaptive Differentiable Predictive Control Policies
With Guarantees [1.1086440815804224]
We present differentiable predictive control (DPC), a method for learning constrained neural control policies for linear systems.
We employ automatic differentiation to obtain direct policy gradients by backpropagating the model predictive control (MPC) loss function and constraints penalties through a differentiable closed-loop system dynamics model.
arXiv Detail & Related papers (2020-04-23T14:24:44Z) - Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement
Learning [70.01650994156797]
Off- evaluation of sequential decision policies from observational data is necessary in batch reinforcement learning such as education healthcare.
We develop an approach that estimates the bounds of a given policy.
We prove convergence to the sharp bounds as we collect more confounded data.
arXiv Detail & Related papers (2020-02-11T16:18:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.