論文の概要: Membership Inference Attacks Cannot Prove that a Model Was Trained On Your Data
- arxiv url: http://arxiv.org/abs/2409.19798v1
- Date: Sun, 29 Sep 2024 21:49:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:04:45.205322
- Title: Membership Inference Attacks Cannot Prove that a Model Was Trained On Your Data
- Title(参考訳): メンバーシップ推論攻撃は、モデルがデータでトレーニングされたことを証明できない
- Authors: Jie Zhang, Debeshee Das, Gautam Kamath, Florian Tramèr,
- Abstract要約: ウェブスケールのデータに基づいてトレーニングされた基礎モデルに対する最近の訴訟では、データ証明のトレーニングが重要な役割を担っている。
多くの先行研究は、メンバシップ推論攻撃を用いたトレーニングデータ証明のインスタンス化を示唆している。
本研究では, 特殊なカナリアデータに対するデータ抽出攻撃と会員推定が, 音響訓練データ証明の作成に有効であることを示す。
- 参考スコア(独自算出の注目度): 27.18781946018255
- License:
- Abstract: We consider the problem of a training data proof, where a data creator or owner wants to demonstrate to a third party that some machine learning model was trained on their data. Training data proofs play a key role in recent lawsuits against foundation models trained on web-scale data. Many prior works suggest to instantiate training data proofs using membership inference attacks. We argue that this approach is fundamentally unsound: to provide convincing evidence, the data creator needs to demonstrate that their attack has a low false positive rate, i.e., that the attack's output is unlikely under the null hypothesis that the model was not trained on the target data. Yet, sampling from this null hypothesis is impossible, as we do not know the exact contents of the training set, nor can we (efficiently) retrain a large foundation model. We conclude by offering two paths forward, by showing that data extraction attacks and membership inference on special canary data can be used to create sound training data proofs.
- Abstract(参考訳): データ作成者や所有者が、データに基づいて機械学習モデルがトレーニングされたことを第三者に証明したいという、トレーニングデータ証明の問題について検討する。
ウェブスケールのデータに基づいてトレーニングされた基礎モデルに対する最近の訴訟では、データ証明のトレーニングが重要な役割を担っている。
多くの先行研究は、メンバシップ推論攻撃を用いたトレーニングデータ証明のインスタンス化を示唆している。
確証のある証拠を提供するためには、データ作成者は攻撃が偽陽性率の低いこと、すなわち、攻撃の出力がターゲットデータでトレーニングされていないというnull仮説の下ではありそうにないことを示す必要がある。
しかし、トレーニングセットの正確な内容が分かっていないため、このnull仮説からのサンプリングは不可能であり、大きな基礎モデルを再訓練することも(効果的に)できない。
データ抽出攻撃と特別なカナリアデータに対するメンバーシップ推論が、音響訓練データ証明の作成に有効であることを示すことによって、この2つの経路を前進させることで結論付ける。
関連論文リスト
- Confidence Is All You Need for MI Attacks [7.743155804758186]
モデルのトレーニングセットにおけるデータポイントのメンバシップを計測する新しい手法を提案する。
トレーニング中、モデルは基本的にトレーニングデータに'適合'しており、目に見えないデータへの一般化において特に困難に直面している可能性がある。
論文 参考訳(メタデータ) (2023-11-26T18:09:24Z) - Can Membership Inferencing be Refuted? [31.31060116447964]
本研究では,実際に会員推論攻撃の信頼性について検討する。
モデルオーナは,データポイント$x$のメンバシップ推論テストの結果に対して,検証の証明を構築することで,妥当に反証できることを示す。
本研究の結果は,実際に会員推論攻撃がもたらす影響を再評価するものである。
論文 参考訳(メタデータ) (2023-03-07T04:36:35Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
我々は、攻撃者が基礎となるデータ分布についてある程度の知識を持っていると仮定する現実的なMIA設定について論じる。
生成モデルの局所的なオーバーフィッティングをターゲットとして,メンバシップを推論することを目的とした密度ベースMIAモデルであるDOMIASを提案する。
論文 参考訳(メタデータ) (2023-02-24T11:27:39Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
そこでは、事前訓練されたモデルからインスタンスのセットに関する情報を削除することを目標としています。
本稿では,1)表現レベルでの忘れを克服するために,敵の例を活用すること,2)不必要な情報を伝播するネットワークパラメータをピンポイントする重み付け指標を活用すること,の2つの方法を提案する。
論文 参考訳(メタデータ) (2023-01-27T07:53:50Z) - Reconstructing Training Data from Model Gradient, Provably [68.21082086264555]
ランダムに選択されたパラメータ値で1つの勾配クエリからトレーニングサンプルを再構成する。
センシティブなトレーニングデータを示す証明可能な攻撃として、われわれの発見はプライバシーに対する深刻な脅威を示唆している。
論文 参考訳(メタデータ) (2022-12-07T15:32:22Z) - DAD: Data-free Adversarial Defense at Test Time [21.741026088202126]
ディープモデルは敵の攻撃に非常に敏感である。
プライバシは、トレーニングデータではなく、トレーニングされたモデルのみへのアクセスを制限する、重要な関心事になっている。
我々は,「訓練データと統計値の欠如によるテスト時敵防衛」という全く新しい問題を提案する。
論文 参考訳(メタデータ) (2022-04-04T15:16:13Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
トレーニングデータセットを有害にすることができる敵が、このデータセットでトレーニングされたモデルに、他の当事者のプライベート詳細を漏洩させる可能性があることを示す。
私たちの攻撃は、メンバーシップ推論、属性推論、データ抽出に効果的です。
私たちの結果は、機械学習のためのマルチパーティプロトコルにおける暗号化プライバシ保証の関連性に疑問を投げかけました。
論文 参考訳(メタデータ) (2022-03-31T18:06:28Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
我々は、訓練されたモデル間で知識を共有することができる、完全に分散化されたアプローチを提案する。
生徒は、合成された入力データを通じて教師の出力を訓練する。
その結果,教師が学習した未学習学生モデルが,教師と同等のF1スコアに達することがわかった。
論文 参考訳(メタデータ) (2021-02-01T14:38:54Z) - Data Impressions: Mining Deep Models to Extract Samples for Data-free
Applications [26.48630545028405]
データインプレッションはトレーニングデータのプロキシとして機能し、さまざまなタスクを実現するために使用することができる。
いくつかのコンピュータビジョンタスクにおけるデータインプレッションの適用性を示す。
論文 参考訳(メタデータ) (2021-01-15T11:37:29Z) - Amnesiac Machine Learning [15.680008735220785]
最近制定された一般データ保護規則は、欧州連合の居住者に関するデータを持つデータ保有者に影響を与えている。
モデルは、モデル反転攻撃のような情報漏洩攻撃に対して脆弱である。
我々は、モデル所有者が規制に準拠しながら、そのような攻撃から身を守ることのできる、UnlearningとAmnesiac Unlearningの2つのデータ除去方法を提案する。
論文 参考訳(メタデータ) (2020-10-21T13:14:17Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。