Differentially Private Bilevel Optimization
- URL: http://arxiv.org/abs/2409.19800v1
- Date: Sun, 29 Sep 2024 21:52:38 GMT
- Title: Differentially Private Bilevel Optimization
- Authors: Guy Kornowski,
- Abstract summary: We present differentially private (DPright) algorithms for bilevel optimization.
These are the first algorithms for this task that are able to provide any desired empirical setting.
Our analysis covers constrained and unstudied problems alike.
- Score: 4.07926531936425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present differentially private (DP) algorithms for bilevel optimization, a problem class that received significant attention lately in various machine learning applications. These are the first DP algorithms for this task that are able to provide any desired privacy, while also avoiding Hessian computations which are prohibitive in large-scale settings. Under the well-studied setting in which the upper-level is not necessarily convex and the lower-level problem is strongly-convex, our proposed gradient-based $(\epsilon,\delta)$-DP algorithm returns a point with hypergradient norm at most $\widetilde{\mathcal{O}}\left((\sqrt{d_\mathrm{up}}/\epsilon n)^{1/2}+(\sqrt{d_\mathrm{low}}/\epsilon n)^{1/3}\right)$ where $n$ is the dataset size, and $d_\mathrm{up}/d_\mathrm{low}$ are the upper/lower level dimensions. Our analysis covers constrained and unconstrained problems alike, accounts for mini-batch gradients, and applies to both empirical and population losses.
Related papers
- Mirror Descent Algorithms with Nearly Dimension-Independent Rates for
Differentially-Private Stochastic Saddle-Point Problems [6.431793114484429]
We propose $sqrtlog(d)/sqrtn + log(d)/[nvarepsilon]2/5$ to solve the problem of differentially-private saddle-points in the polyhedral setting.
We show that our algorithms attain a rate of $sqrtlog(d)/sqrtn + log(d)/[nvarepsilon]2/5$ with constant success.
arXiv Detail & Related papers (2024-03-05T12:28:00Z) - Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space [10.292118864147097]
We develop a theory of finite-dimensional polyhedral subsets over the Wasserstein space and optimization of functionals over them via first-order methods.<n>Our main application is to the problem of mean-field variational inference, which seeks to approximate a distribution $pi$ over $mathbbRd$ by a product measure $pistar$.<n>As a byproduct of our analysis, we obtain the first end-to-end analysis for gradient-based algorithms for MFVI.
arXiv Detail & Related papers (2023-12-05T16:02:04Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
We introduce a new tool for BFG convex optimization (SCO): a Reweighted Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density.
We develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings.
arXiv Detail & Related papers (2023-01-01T18:51:29Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - Sharper Utility Bounds for Differentially Private Models [20.246768861331276]
First $mathcalObig(fracsqrtpnepsilonbig)$ high probability excess population risk bound for differentially private algorithms.
New proposed algorithm m-NGP improves the performance of the differentially private model over real datasets.
arXiv Detail & Related papers (2022-04-22T07:03:13Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Non-Euclidean Differentially Private Stochastic Convex Optimization [15.302167005107135]
We show that noisy gradient descent (SGD) algorithms attain the optimal excess risk in low-dimensional regimes.
Our work draws upon concepts from the geometry of normed spaces, such as the notions of regularity, uniform convexity, and uniform smoothness.
arXiv Detail & Related papers (2021-03-01T19:48:44Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
We propose a new algorithm -- the Momentum- Single-timescale Approximation (MSTSA) -- for tackling problems.
MSTSA allows us to control the error in iterations due to inaccurate solution to the lower level subproblem.
arXiv Detail & Related papers (2021-02-15T07:10:33Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - On the Divergence of Decentralized Non-Convex Optimization [44.743563268496715]
We show that when certain local conditions (LLC) on the local function $nabla f_iilons are not satisfied, most of the existing decentralized algorithms diverge.
In particular, we show that the proposed algorithm converges subly to certain $epsilon-stationary solution.
arXiv Detail & Related papers (2020-06-20T21:42:06Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.