The Construction of Instruction-tuned LLMs for Finance without Instruction Data Using Continual Pretraining and Model Merging
- URL: http://arxiv.org/abs/2409.19854v1
- Date: Mon, 30 Sep 2024 01:23:28 GMT
- Title: The Construction of Instruction-tuned LLMs for Finance without Instruction Data Using Continual Pretraining and Model Merging
- Authors: Masanori Hirano, Kentaro Imajo,
- Abstract summary: This paper proposes a novel method for constructing instruction-tuned large language models (LLMs) for finance without instruction data.
Our method combines domain-specific continual pretraining with model merging.
One major advantage of our method is that the instruction-tuned and domain-specific pretrained vectors are nearly independent.
- Score: 1.4491649618823355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel method for constructing instruction-tuned large language models (LLMs) for finance without instruction data. Traditionally, developing such domain-specific LLMs has been resource-intensive, requiring a large dataset and significant computational power for continual pretraining and instruction tuning. Our study proposes a simpler approach that combines domain-specific continual pretraining with model merging. Given that general-purpose pretrained LLMs and their instruction-tuned LLMs are often publicly available, they can be leveraged to obtain the necessary instruction task vector. By merging this with a domain-specific pretrained vector, we can effectively create instruction-tuned LLMs for finance without additional instruction data. Our process involves two steps: first, we perform continual pretraining on financial data; second, we merge the instruction-tuned vector with the domain-specific pretrained vector. Our experiments demonstrate the successful construction of instruction-tuned LLMs for finance. One major advantage of our method is that the instruction-tuned and domain-specific pretrained vectors are nearly independent. This independence makes our approach highly effective. The Japanese financial instruction-tuned LLMs we developed in this study are available at https://huggingface.co/pfnet/nekomata-14b-pfn-qfin-inst-merge.
Related papers
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
A primary challenge in large language model (LLM) development is their onerous pre-training cost.
This paper explores a promising paradigm to improve LLM pre-training efficiency and quality by leveraging a small language model (SLM)
arXiv Detail & Related papers (2024-10-24T14:31:52Z) - Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs [4.096028601599825]
Large Language Models (LLMs) for public use require continuous pre-training to remain up-to-date with the latest data.
This study aims to find the most compute-efficient strategy to gain up-to-date knowledge and instruction-following capabilities without requiring any instruction data and fine-tuning.
arXiv Detail & Related papers (2024-10-14T17:20:30Z) - Traditional Methods Outperform Generative LLMs at Forecasting Credit Ratings [17.109522466982476]
Large Language Models (LLMs) have been shown to perform well for many downstream tasks.
This paper investigates how well LLMs perform in the task of forecasting corporate credit ratings.
arXiv Detail & Related papers (2024-07-24T20:30:55Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - Data-Centric Financial Large Language Models [27.464319154543173]
Large language models (LLMs) show promise for natural language tasks but struggle when applied directly to complex domains like finance.
We propose a data-centric approach to enable LLMs to better handle financial tasks.
arXiv Detail & Related papers (2023-10-07T04:53:31Z) - Large Language Models in Finance: A Survey [12.243277149505364]
Large language models (LLMs) have opened new possibilities for artificial intelligence applications in finance.
Recent advances in large language models (LLMs) have opened new possibilities for artificial intelligence applications in finance.
arXiv Detail & Related papers (2023-09-28T06:04:04Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Towards Building the Federated GPT: Federated Instruction Tuning [66.7900343035733]
This paper introduces Federated Instruction Tuning (FedIT) as the learning framework for the instruction tuning of large language models (LLMs)
We demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions.
arXiv Detail & Related papers (2023-05-09T17:42:34Z) - Knowledge Inheritance for Pre-trained Language Models [57.51305807391381]
We introduce a novel pre-training framework named "knowledge inheritance" (KI)
KI combines both self-learning and teacher-guided learning to efficiently train larger PLMs.
We show that KI can well support lifelong learning and knowledge transfer.
arXiv Detail & Related papers (2021-05-28T14:43:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.