論文の概要: Replace Anyone in Videos
- arxiv url: http://arxiv.org/abs/2409.19911v1
- Date: Mon, 30 Sep 2024 03:27:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:03:58.602560
- Title: Replace Anyone in Videos
- Title(参考訳): ビデオで誰にでも置き換える
- Authors: Xiang Wang, Changxin Gao, Yuehuan Wang, Nong Sang,
- Abstract要約: ビデオ中の人間の動きのローカライズと操作に焦点を当てたReplaceAnyoneフレームワークを提案する。
具体的には、このタスクをイメージ条件付きポーズ駆動ビデオインペインティングパラダイムとして定式化する。
形状漏れを回避し,局所制御のきめ細かな制御を可能にするために,規則形状と不規則形状を含む多種多様なマスク形式を導入する。
- 参考スコア(独自算出の注目度): 39.4019337319795
- License:
- Abstract: Recent advancements in controllable human-centric video generation, particularly with the rise of diffusion models, have demonstrated considerable progress. However, achieving precise and localized control over human motion, e.g., replacing or inserting individuals into videos while exhibiting desired motion patterns, still remains challenging. In this work, we propose the ReplaceAnyone framework, which focuses on localizing and manipulating human motion in videos with diverse and intricate backgrounds. Specifically, we formulate this task as an image-conditioned pose-driven video inpainting paradigm, employing a unified video diffusion architecture that facilitates image-conditioned pose-driven video generation and inpainting within masked video regions. Moreover, we introduce diverse mask forms involving regular and irregular shapes to avoid shape leakage and allow granular local control. Additionally, we implement a two-stage training methodology, initially training an image-conditioned pose driven video generation model, followed by joint training of the video inpainting within masked areas. In this way, our approach enables seamless replacement or insertion of characters while maintaining the desired pose motion and reference appearance within a single framework. Experimental results demonstrate the effectiveness of our method in generating realistic and coherent video content.
- Abstract(参考訳): 制御可能な人中心ビデオ生成の最近の進歩、特に拡散モデルの台頭は、かなりの進歩を見せている。
しかし、人間の動きを正確にかつ局所的に制御すること、例えば、ビデオに個人を置き換えたり、挿入したりしながら、望ましい動きのパターンを示すことは、依然として困難である。
本研究では,多彩で複雑な背景を持つビデオにおける人間の動きのローカライズと操作に焦点を当てたReplaceAnyoneフレームワークを提案する。
具体的には、このタスクを、画像条件付きポーズ駆動ビデオ塗装パラダイムとして定式化し、画像条件付きポーズ駆動ビデオ生成とマスク付きビデオ領域内のインペイントを容易にする統合ビデオ拡散アーキテクチャを用いる。
さらに, 形状の漏れを回避し, 局所制御のきめ細やかな制御を可能にするために, 規則形状と不規則形状を含む多種多様なマスク形式を導入する。
さらに,2段階のトレーニング手法を実装し,まず画像条件付きポーズ駆動型映像生成モデルを訓練し,その後,マスク付き領域内での映像の合体訓練を行った。
このようにして、本手法は、1つのフレームワーク内で所望のポーズ動作と参照外観を維持しつつ、文字のシームレスな置換や挿入を可能にする。
実験により,現実的かつ一貫性のある映像コンテンツを生成する上で,本手法の有効性が示された。
関連論文リスト
- WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models [132.77237314239025]
ビデオ仮想トライオンは、衣料品のアイデンティティを維持し、ソースビデオにおける人のポーズと身体の形に適応する現実的なシーケンスを生成することを目的としている。
従来の画像ベースの手法は、ワープとブレンディングに依存しており、複雑な人間の動きや閉塞に苦しむ。
衣料品の説明や人間の動きを条件とした映像生成のプロセスとして,映像試行を再認識する。
私たちのソリューションであるWildVidFitは、画像ベースで制御された拡散モデルを用いて、一段階の合理化を図っている。
論文 参考訳(メタデータ) (2024-07-15T11:21:03Z) - Temporally Consistent Object Editing in Videos using Extended Attention [9.605596668263173]
本稿では,事前学習した画像拡散モデルを用いて映像を編集する手法を提案する。
編集された情報がすべてのビデオフレームで一貫していることを保証する。
論文 参考訳(メタデータ) (2024-06-01T02:31:16Z) - Disentangling Foreground and Background Motion for Enhanced Realism in Human Video Generation [15.569467643817447]
異なる動き表現を用いて動きを分離することで、前景と背景のダイナミクスを同時に学習する手法を提案する。
我々は、この革新的な動きの描写アプローチによって強化された現実世界の動画を訓練する。
誤りを蓄積することなく、より長いシーケンスにビデオ生成をさらに拡張するために、クリップ・バイ・クリップ・ジェネレーション・ストラテジーを採用する。
論文 参考訳(メタデータ) (2024-05-26T00:53:26Z) - DreamVideo: Composing Your Dream Videos with Customized Subject and
Motion [52.7394517692186]
対象の静的画像からパーソナライズされたビデオを生成する新しいアプローチであるDreamVideoを紹介します。
DreamVideoは、このタスクを、トレーニング済みのビデオ拡散モデルを活用することによって、主観学習とモーション学習の2つの段階に分離する。
モーション学習では、対象のモーションパターンを効果的にモデル化するために、モーションアダプタを設計し、所定のビデオに微調整する。
論文 参考訳(メタデータ) (2023-12-07T16:57:26Z) - SAVE: Protagonist Diversification with Structure Agnostic Video Editing [29.693364686494274]
従来の作品は通常、自明で一貫した形状でうまく機能し、元のものと大きく異なる体形を持つ難しいターゲットで容易に崩壊する。
動きのパーソナライズを単一音源映像から分離し,それに応じて動きの調整を行う。
我々はまた、新しい擬似光学フローを導入することにより、動き語を適切な動き関連領域に適応するように調整する。
論文 参考訳(メタデータ) (2023-12-05T05:13:20Z) - Generative Rendering: Controllable 4D-Guided Video Generation with 2D
Diffusion Models [40.71940056121056]
本稿では,動的3次元メッシュの制御可能性と,新しい拡散モデルの表現性と編集性を組み合わせた新しいアプローチを提案する。
本手法は,トリグアセットのアニメーションやカメラパスの変更によって,動きを得られる様々な例について実証する。
論文 参考訳(メタデータ) (2023-12-03T14:17:11Z) - DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors [63.43133768897087]
オープンドメイン画像をアニメーションビデオに変換する手法を提案する。
鍵となるアイデアは、画像を生成プロセスに組み込むことで、テキストからビデオへの拡散モデルに先立っての動きを活用することである。
提案手法は視覚的に説得力があり、より論理的で自然な動きが得られ、入力画像への適合性が向上する。
論文 参考訳(メタデータ) (2023-10-18T14:42:16Z) - MotionDirector: Motion Customization of Text-to-Video Diffusion Models [24.282240656366714]
Motion Customizationは、既存のテキストとビデオの拡散モデルを適用して、カスタマイズされたモーションでビデオを生成することを目的としている。
我々は、外見と動きの学習を分離するために、デュアルパスのLoRAsアーキテクチャを持つMotionDirectorを提案する。
また,異なる動画の外観と動きの混合や,カスタマイズされたモーションによる単一画像のアニメーションなど,さまざまなダウンストリームアプリケーションもサポートしている。
論文 参考訳(メタデータ) (2023-10-12T16:26:18Z) - Masked Motion Encoding for Self-Supervised Video Representation Learning [84.24773072241945]
Masked Motion MMEは、外観情報と動作情報の両方を再構成し、時間的手がかりを探索する新しい事前学習パラダイムである。
物体の位置変化や形状変化を追跡することで、人間が行動を認識することができるという事実を動機として、マスク領域におけるこれらの2種類の変化を表す運動軌跡を再構築することを提案する。
我々のMMEパラダイムで事前訓練されたモデルでは、長期的かつきめ細かな動きの詳細を予測できる。
論文 参考訳(メタデータ) (2022-10-12T11:19:55Z) - Video2StyleGAN: Disentangling Local and Global Variations in a Video [68.70889857355678]
StyleGANは、顔編集の強力なパラダイムとして登場し、年齢、表現、照明などに対する混乱したコントロールを提供する。
我々は,対象画像の同一性において,運転映像の局所的およびグローバル的位置と表現を再現するために,対象画像と運転映像を撮影するVideo2StyleGANを紹介する。
論文 参考訳(メタデータ) (2022-05-27T14:18:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。