論文の概要: Move-in-2D: 2D-Conditioned Human Motion Generation
- arxiv url: http://arxiv.org/abs/2412.13185v1
- Date: Tue, 17 Dec 2024 18:58:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:58:18.500953
- Title: Move-in-2D: 2D-Conditioned Human Motion Generation
- Title(参考訳): Move-in-2D:2D-Conditioned Human Motion Generation
- Authors: Hsin-Ping Huang, Yang Zhou, Jui-Hsien Wang, Difan Liu, Feng Liu, Ming-Hsuan Yang, Zhan Xu,
- Abstract要約: そこで我々は,シーンイメージに条件付けされた人間の動作シーケンスを生成する新しい手法であるMove-in-2Dを提案する。
本手法はシーンイメージとテキストプロンプトの両方を入力として受け入れ,シーンに合わせた動作シーケンスを生成する。
- 参考スコア(独自算出の注目度): 54.067588636155115
- License:
- Abstract: Generating realistic human videos remains a challenging task, with the most effective methods currently relying on a human motion sequence as a control signal. Existing approaches often use existing motion extracted from other videos, which restricts applications to specific motion types and global scene matching. We propose Move-in-2D, a novel approach to generate human motion sequences conditioned on a scene image, allowing for diverse motion that adapts to different scenes. Our approach utilizes a diffusion model that accepts both a scene image and text prompt as inputs, producing a motion sequence tailored to the scene. To train this model, we collect a large-scale video dataset featuring single-human activities, annotating each video with the corresponding human motion as the target output. Experiments demonstrate that our method effectively predicts human motion that aligns with the scene image after projection. Furthermore, we show that the generated motion sequence improves human motion quality in video synthesis tasks.
- Abstract(参考訳): リアルな人間のビデオを生成することは依然として難しい課題であり、現在最も効果的な方法は人間のモーションシーケンスを制御信号として頼っている。
既存のアプローチでは、他のビデオから抽出された既存のモーションを使用し、特定のモーションタイプやグローバルなシーンマッチングにアプリケーションを制限する。
そこで我々は,シーンイメージに条件付けされた人間の動作シーケンスを生成する新しい手法であるMove-in-2Dを提案し,異なるシーンに適応する多様な動作を実現する。
提案手法では,シーンイメージとテキストプロンプトの両方を入力として受け入れる拡散モデルを用いて,シーンに合わせた動作シーケンスを生成する。
このモデルをトレーニングするために,1人のアクティビティを特徴とする大規模ビデオデータセットを収集し,対象の出力として,各動画に対応する人間の動きを付加する。
提案手法は投影後のシーン画像と一致した人間の動きを効果的に予測できることを示す。
さらに,映像合成タスクにおいて,生成した動き系列が人間の動きの質を向上させることを示す。
関連論文リスト
- Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
スパースもしくは高密度なビデオ軌跡を条件とした映像生成モデルを訓練する。
ハイレベルなユーザリクエストを,詳細なセミセンスな動作プロンプトに変換する。
我々は、カメラや物体の動き制御、画像との「相互作用」、動画転送、画像編集など、様々な応用を通してアプローチを実証する。
論文 参考訳(メタデータ) (2024-12-03T18:59:56Z) - Reenact Anything: Semantic Video Motion Transfer Using Motion-Textual Inversion [9.134743677331517]
本研究では、動きから外見を遠ざけるために、事前訓練された画像間映像モデルを提案する。
動作テキストインバージョン(Motion-textual Inversion)と呼ばれるこの手法は、画像から映像へのモデルが、主に(相対的な)画像入力から外観を抽出する、という観察を生かしている。
フレームごとの複数のテキスト/画像埋め込みトークンを含むインフレーションされたモーションテキスト埋め込みを操作することにより、高時間運動粒度を実現する。
動作参照ビデオと対象画像の間に空間的アライメントを必要とせず,様々な領域にまたがって一般化し,様々なタスクに適用することができる。
論文 参考訳(メタデータ) (2024-08-01T10:55:20Z) - Generating Human Interaction Motions in Scenes with Text Control [66.74298145999909]
本稿では,デノナイズ拡散モデルに基づくテキスト制御されたシーン認識動作生成手法TeSMoを提案する。
我々のアプローチは、シーンに依存しないテキスト-モーション拡散モデルの事前学習から始まります。
トレーニングを容易にするため,シーン内に注釈付きナビゲーションと対話動作を組み込む。
論文 参考訳(メタデータ) (2024-04-16T16:04:38Z) - PACE: Human and Camera Motion Estimation from in-the-wild Videos [113.76041632912577]
本研究では,移動カメラのグローバルシーンにおける人間の動きを推定する手法を提案する。
これは、ビデオ中の人間とカメラの動きが混ざり合っているため、非常に難しい作業である。
本研究では,人体とカメラの動作を前景の人体と背景の両方の特徴を用いてアンハングリングする共同最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-20T19:04:14Z) - MotionDirector: Motion Customization of Text-to-Video Diffusion Models [24.282240656366714]
Motion Customizationは、既存のテキストとビデオの拡散モデルを適用して、カスタマイズされたモーションでビデオを生成することを目的としている。
我々は、外見と動きの学習を分離するために、デュアルパスのLoRAsアーキテクチャを持つMotionDirectorを提案する。
また,異なる動画の外観と動きの混合や,カスタマイズされたモーションによる単一画像のアニメーションなど,さまざまなダウンストリームアプリケーションもサポートしている。
論文 参考訳(メタデータ) (2023-10-12T16:26:18Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: 命令型ニューラル表現を用いたタスク指向型ヒューマンオブジェクトインタラクション生成
本手法は時間座標のみでパラメータ化される連続運動を生成する。
この研究は、一般的なヒューマン・シーンの相互作用シミュレーションに向けて一歩前進する。
論文 参考訳(メタデータ) (2023-03-23T09:31:56Z) - Action2video: Generating Videos of Human 3D Actions [31.665831044217363]
我々は、所定のアクションカテゴリから多様で自然な人間の動きのビデオを生成するという、興味深いが挑戦的な課題に取り組むことを目的としている。
重要な問題は、視覚的な外観で現実的な複数の異なる動き列を合成する能力にある。
Action2motionallyは、所定のアクションカテゴリのもっともらしい3Dポーズシーケンスを生成し、モーション2ビデオによって処理され、レンダリングされ、2Dビデオを形成する。
論文 参考訳(メタデータ) (2021-11-12T20:20:37Z) - Scene-aware Generative Network for Human Motion Synthesis [125.21079898942347]
シーンと人間の動きの相互作用を考慮した新しい枠組みを提案する。
人間の動きの不確実性を考慮すると、このタスクを生成タスクとして定式化する。
我々は、人間の動きと文脈シーンとの整合性を強制するための識別器を備えた、GANに基づく学習アプローチを導出する。
論文 参考訳(メタデータ) (2021-05-31T09:05:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。