Positive-Sum Fairness: Leveraging Demographic Attributes to Achieve Fair AI Outcomes Without Sacrificing Group Gains
- URL: http://arxiv.org/abs/2409.19940v1
- Date: Mon, 30 Sep 2024 04:37:23 GMT
- Title: Positive-Sum Fairness: Leveraging Demographic Attributes to Achieve Fair AI Outcomes Without Sacrificing Group Gains
- Authors: Samia Belhadj, Sanguk Park, Ambika Seth, Hesham Dar, Thijs Kooi,
- Abstract summary: We argue that decreases in fairness can be harmful or non-harmful depending on the type of change and how sensitive attributes are used.
We introduce the notion of positive-sum fairness, which states that an increase in performance that results in a larger group disparity is acceptable as long as it does not come at the cost of individual subgroup performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fairness in medical AI is increasingly recognized as a crucial aspect of healthcare delivery. While most of the prior work done on fairness emphasizes the importance of equal performance, we argue that decreases in fairness can be either harmful or non-harmful, depending on the type of change and how sensitive attributes are used. To this end, we introduce the notion of positive-sum fairness, which states that an increase in performance that results in a larger group disparity is acceptable as long as it does not come at the cost of individual subgroup performance. This allows sensitive attributes correlated with the disease to be used to increase performance without compromising on fairness. We illustrate this idea by comparing four CNN models that make different use of the race attribute in the training phase. The results show that removing all demographic encodings from the images helps close the gap in performance between the different subgroups, whereas leveraging the race attribute as a model's input increases the overall performance while widening the disparities between subgroups. These larger gaps are then put in perspective of the collective benefit through our notion of positive-sum fairness to distinguish harmful from non harmful disparities.
Related papers
- Fair Distillation: Teaching Fairness from Biased Teachers in Medical Imaging [16.599189934420885]
We propose the Fair Distillation (FairDi) method to address fairness concerns in deep learning.
We show that FairDi achieves significant gains in both overall and group-specific accuracy, along with improved fairness, compared to existing methods.
FairDi is adaptable to various medical tasks, such as classification and segmentation, and provides an effective solution for equitable model performance.
arXiv Detail & Related papers (2024-11-18T16:50:34Z) - The Disparate Benefits of Deep Ensembles [11.303233667605586]
We investigate the interplay between performance gains from Deep Ensembles and fairness.
We find that they unevenly favor different groups in what we refer to as a disparate benefits effect.
Our findings show that post-processing is an effective method to mitigate this unfairness.
arXiv Detail & Related papers (2024-10-17T17:53:01Z) - What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
In reinforcement learning problems, agents must consider long-term fairness while maximizing returns.
Recent works have proposed many different types of fairness notions, but how unfairness arises in RL problems remains unclear.
We introduce a novel notion called dynamics fairness, which explicitly captures the inequality stemming from environmental dynamics.
arXiv Detail & Related papers (2024-04-16T22:47:59Z) - Improving Fairness using Vision-Language Driven Image Augmentation [60.428157003498995]
Fairness is crucial when training a deep-learning discriminative model, especially in the facial domain.
Models tend to correlate specific characteristics (such as age and skin color) with unrelated attributes (downstream tasks)
This paper proposes a method to mitigate these correlations to improve fairness.
arXiv Detail & Related papers (2023-11-02T19:51:10Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - Fairness via Adversarial Attribute Neighbourhood Robust Learning [49.93775302674591]
We propose a principled underlineRobust underlineAdversarial underlineAttribute underlineNeighbourhood (RAAN) loss to debias the classification head.
arXiv Detail & Related papers (2022-10-12T23:39:28Z) - Learning Fair Node Representations with Graph Counterfactual Fairness [56.32231787113689]
We propose graph counterfactual fairness, which considers the biases led by the above facts.
We generate counterfactuals corresponding to perturbations on each node's and their neighbors' sensitive attributes.
Our framework outperforms the state-of-the-art baselines in graph counterfactual fairness.
arXiv Detail & Related papers (2022-01-10T21:43:44Z) - Parity-based Cumulative Fairness-aware Boosting [7.824964622317634]
Data-driven AI systems can lead to discrimination on the basis of protected attributes like gender or race.
We propose AdaFair, a fairness-aware boosting ensemble that changes the data distribution at each round.
Our experiments show that our approach can achieve parity in terms of statistical parity, equal opportunity, and disparate mistreatment.
arXiv Detail & Related papers (2022-01-04T14:16:36Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Adversarial Learning for Counterfactual Fairness [15.302633901803526]
In recent years, fairness has become an important topic in the machine learning research community.
We propose to rely on an adversarial neural learning approach, that enables more powerful inference than with MMD penalties.
Experiments show significant improvements in term of counterfactual fairness for both the discrete and the continuous settings.
arXiv Detail & Related papers (2020-08-30T09:06:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.