論文の概要: Early review of Gender Bias of OpenAI o1-mini: Higher Intelligence of LLM does not necessarily solve Gender Bias and Stereotyping issues
- arxiv url: http://arxiv.org/abs/2409.19959v1
- Date: Mon, 30 Sep 2024 05:22:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:05:57.497480
- Title: Early review of Gender Bias of OpenAI o1-mini: Higher Intelligence of LLM does not necessarily solve Gender Bias and Stereotyping issues
- Title(参考訳): OpenAI o1-miniのジェンダーバイアスの早期レビュー: LLMの高次知能は必ずしもジェンダーバイアスとステレオタイピングの問題を解決するとは限らない
- Authors: Rajesh Ranjan, Shailja Gupta, Surya Naranyan Singh,
- Abstract要約: 我々は,OpenAI o1-miniモデルの初期評価を行い,性別の傾向と偏りを解析した。
本研究は, GPT-4o mini 700人, o1-mini 350人を対象に行ったもので, 性格特性や嗜好に関する傾向が改善したにもかかわらず, 有意な性別バイアスが残ることが明らかとなった。
例えば、o1-miniの男子は8.06点、女子は7.88点、非バイナリは7.80点である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we present an early evaluation of the OpenAI o1-mini model, analyzing its performance in gender inclusivity and bias. Our research, conducted on 700 personas 350 from GPT-4o mini and 350 from o1-mini, reveals that despite improvements in inclusivity regarding personality traits and preferences, significant gender biases remain. For instance, o1-mini rated male personas higher in competency, with a score of 8.06, compared to female personas at 7.88 and non-binary personas at 7.80. Additionally, o1-mini assigned PhD roles to 28% of male personas but only 22.4% of females and 0% of non-binary personas. Male personas were also more likely to be perceived as successful founders, at 69.4%, and CEOs, at 62.17%, compared to female personas at 67.97% and 61.11%, and non-binary personas at 65.7% and 58.37%. The analysis reveals persistent gender biases across fields like Engineering, Data, and Technology, where males dominate, reflecting traditional stereotypes. Conversely, fields like Design, Art, and Marketing show a stronger presence of females, reinforcing societal notions that associate creativity and communication with females. These findings highlight ongoing challenges in mitigating gender bias, reinforcing the need for further interventions to ensure equitable representation across all genders in AI models.
- Abstract(参考訳): 本稿では,OpenAI o1-miniモデルの初期評価を行い,性別の傾向と偏りを解析した。
本研究は, GPT-4o mini 700人, o1-mini 350人を対象に行った結果, 性格特性や嗜好に関する傾向が改善したにもかかわらず, 有意な性別バイアスが残ることが明らかとなった。
例えば、o1-miniの男子は8.06点、女子は7.88点、非バイナリは7.80点である。
さらに、o1-miniは男性28%にPhDを割り当てたが、女性22.4%、非バイナリ・ペルソナ0%に留まった。
男性ペルソナは69.4%、CEOは62.17%、女性ペルソナは67.97%、61.11%、非バイナリペルソナは65.7%、非バイナリペルソナは58.37%であった。
この分析によって、男性は伝統的なステレオタイプを反映して、エンジニアリング、データ、テクノロジーといった分野にまたがる永続的な性別バイアスが明らかになる。
逆に、デザイン、アート、マーケティングといった分野は女性の存在を強く示し、創造性と女性とのコミュニケーションを結び付ける社会的概念を強化する。
これらの発見は、ジェンダーバイアスを緩和する上で進行中の課題を強調し、AIモデルにおけるすべてのジェンダーの平等な表現を保証するためのさらなる介入の必要性を強化する。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - GenderAlign: An Alignment Dataset for Mitigating Gender Bias in Large Language Models [20.98831667981121]
大きな言語モデル(LLM)は、性別バイアスを示すコンテンツを生成する傾向がある。
GenderAlignデータセットは8kのシングルターンダイアログで構成されており、それぞれに "chosen" と "rejected" の応答がペアリングされている。
拒絶された」反応と比較すると、「ちょうせん」反応は性バイアスのレベルが低く、より高い品質を示す。
論文 参考訳(メタデータ) (2024-06-20T01:45:44Z) - The Male CEO and the Female Assistant: Gender Biases in Text-To-Image Generation of Dual Subjects [58.27353205269664]
本稿では,T2Iモデルを二重オブジェクト生成設定で体系的に評価するPaired Stereotype Test (PST) フレームワークを提案する。
PSTは、二重オブジェクト生成タスク、すなわち、同じイメージで2人を生成するタスクである。
DALLE-3は、一見公平で反ステレオタイプな単体画像でも、PST下では顕著な偏見を示す。
論文 参考訳(メタデータ) (2024-02-16T21:32:27Z) - AI Gender Bias, Disparities, and Fairness: Does Training Data Matter? [3.509963616428399]
この研究は、人工知能(AI)におけるジェンダー問題に関する広範囲にわたる課題について考察する。
それは、6つの評価項目で男女1000人以上の学生の反応を分析する。
その結果,混合学習モデルのスコアリング精度は,男性モデルと女性モデルとでは有意な差があることが示唆された。
論文 参考訳(メタデータ) (2023-12-17T22:37:06Z) - Identifying and examining machine learning biases on Adult dataset [0.7856362837294112]
この研究は、エンサンブルラーニングによる機械学習モデルバイアスの低減を念頭に置いている。
我々の厳密な方法論は、様々なカテゴリー変数にまたがる偏見を包括的に評価し、最終的に顕著な男女属性偏見を明らかにします。
本研究は,データ駆動型社会における倫理的考察とハイブリッドモデルの実現を提唱する。
論文 参考訳(メタデータ) (2023-10-13T19:41:47Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
本研究では,事前学習したニューラルジェネレーションモデルにおける性別バイアスの程度に,高齢者がどのような影響を及ぼすかを検討する。
以上の結果から, GPT-2は, 両領域において, 女性を中年, 男性を中年として考えることにより, 偏見を増幅することが示された。
以上の結果から, GPT-2を用いて構築したNLPアプリケーションは, プロの能力において女性に害を与える可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:05:02Z) - Are Commercial Face Detection Models as Biased as Academic Models? [64.71318433419636]
我々は学術的および商業的な顔検出システムを比較し、特にノイズに対する堅牢性について検討する。
現状の学術的顔検出モデルでは、ノイズの頑健性に人口格差があることがわかった。
私たちは、商用モデルは、常に学術モデルと同じくらいの偏り、あるいはより偏りがある、と結論付けます。
論文 参考訳(メタデータ) (2022-01-25T02:21:42Z) - Responsible AI: Gender bias assessment in emotion recognition [6.833826997240138]
本研究は、顔認識のための深層学習手法における性別バイアスの研究を目的とする。
より多くのバイアスニューラルネットワークは、男性と女性のテストセット間の感情認識のより大きな精度のギャップを示しています。
論文 参考訳(メタデータ) (2021-03-21T17:00:21Z) - Understanding Fairness of Gender Classification Algorithms Across
Gender-Race Groups [0.8594140167290097]
本研究の目的は,性別・人種間の性別分類アルゴリズムの差分性能について検討することである。
すべてのアルゴリズムにおいて、黒人女性(一般には黒人人種)は最小の精度で常に取得した。
中東の男性とラテン系の女性は、ほとんどの場合より高い精度で取得した。
論文 参考訳(メタデータ) (2020-09-24T04:56:10Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。