論文の概要: The LLM Wears Prada: Analysing Gender Bias and Stereotypes through Online Shopping Data
- arxiv url: http://arxiv.org/abs/2504.01951v1
- Date: Wed, 02 Apr 2025 17:56:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:26:05.169503
- Title: The LLM Wears Prada: Analysing Gender Bias and Stereotypes through Online Shopping Data
- Title(参考訳): LLMがPradaを開発中:オンラインショッピングデータによるジェンダーバイアスとステレオタイプの分析
- Authors: Massimiliano Luca, Ciro Beneduce, Bruno Lepri, Jacopo Staiano,
- Abstract要約: 本研究では,オンラインショッピング履歴のみに基づいて,大規模言語モデルが個人の性別を予測できるかどうかを検討する。
米国ユーザーのオンライン購入履歴のデータセットを用いて、性別を分類する6つのLCMの能力を評価する。
結果は、モデルが適度な精度で性別を推測できる一方で、その決定は製品カテゴリーと性別のステレオタイプ的関連に根ざしていることを示している。
- 参考スコア(独自算出の注目度): 8.26034886618475
- License:
- Abstract: With the wide and cross-domain adoption of Large Language Models, it becomes crucial to assess to which extent the statistical correlations in training data, which underlie their impressive performance, hide subtle and potentially troubling biases. Gender bias in LLMs has been widely investigated from the perspectives of works, hobbies, and emotions typically associated with a specific gender. In this study, we introduce a novel perspective. We investigate whether LLMs can predict an individual's gender based solely on online shopping histories and whether these predictions are influenced by gender biases and stereotypes. Using a dataset of historical online purchases from users in the United States, we evaluate the ability of six LLMs to classify gender and we then analyze their reasoning and products-gender co-occurrences. Results indicate that while models can infer gender with moderate accuracy, their decisions are often rooted in stereotypical associations between product categories and gender. Furthermore, explicit instructions to avoid bias reduce the certainty of model predictions, but do not eliminate stereotypical patterns. Our findings highlight the persistent nature of gender biases in LLMs and emphasize the need for robust bias-mitigation strategies.
- Abstract(参考訳): 大規模言語モデルが広範にクロスドメインに採用されるにつれ、トレーニングデータにおける統計的相関が、その印象的なパフォーマンスを過小評価し、微妙で厄介なバイアスを隠蔽するかどうかを評価することが重要になる。
LLMにおける性バイアスは、仕事、趣味、感情の観点から、通常特定の性別に関連付けられていることが広く研究されている。
本研究では,新しい視点を紹介する。
LLMは、オンラインショッピング履歴のみに基づいて、個人の性別を予測できるかどうかと、これらの予測がジェンダーバイアスやステレオタイプの影響を受けているかどうかを検討する。
米国ユーザーの過去のオンライン購入のデータセットを用いて、性別を分類する6つのLCMの能力を評価し、それらの推論とプロダクトジェンダーの共起を解析する。
結果は、モデルが適度な精度で性別を推測できる一方で、その決定は製品カテゴリーと性別のステレオタイプ的関連に根ざしていることを示している。
さらに、バイアスを避けるための明示的な指示は、モデル予測の確実性を低下させるが、ステレオタイプパターンを排除しない。
本研究は, LLMにおける性バイアスの持続的性質を強調し, 頑健なバイアス緩和戦略の必要性を強調した。
関連論文リスト
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
我々はトランスジェンダー、ノンバイナリ、その他のジェンダー・ディバースのアイデンティティを中心とし、アライメント手順が既存のジェンダー・ディバースバイアスとどのように相互作用するかを検討する。
以上の結果から,DPO対応モデルは特に教師付き微調整に敏感であることが示唆された。
DPOとより広範なアライメントプラクティスに合わせたレコメンデーションで締めくくります。
論文 参考訳(メタデータ) (2024-11-06T06:50:50Z) - Revealing and Reducing Gender Biases in Vision and Language Assistants (VLAs) [82.57490175399693]
画像・テキスト・ビジョン言語アシスタント(VLA)22種における性別バイアスの検討
以上の結果から,VLAは実世界の作業不均衡など,データ中の人間のバイアスを再現する可能性が示唆された。
これらのモデルにおける性別バイアスを排除するため、微調整に基づくデバイアス法は、デバイアス化と性能維持の最良のトレードオフを実現する。
論文 参考訳(メタデータ) (2024-10-25T05:59:44Z) - GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
大規模言語モデル(LLM)は、自然言語生成において顕著な能力を示してきたが、社会的バイアスを増大させることも観察されている。
GenderCAREは、革新的な基準、バイアス評価、リダクションテクニック、評価メトリクスを含む包括的なフレームワークである。
論文 参考訳(メタデータ) (2024-08-22T15:35:46Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - Hire Me or Not? Examining Language Model's Behavior with Occupation Attributes [7.718858707298602]
大規模言語モデル(LLM)は、採用やレコメンデーションシステムなど、プロダクションパイプラインに広く統合されている。
本稿では、職業意思決定の文脈において、ジェンダーステレオタイプに関するLCMの行動について検討する。
論文 参考訳(メタデータ) (2024-05-06T18:09:32Z) - Locating and Mitigating Gender Bias in Large Language Models [40.78150878350479]
大規模言語モデル(LLM)は、人間の好みを含む事実や人間の認知を学ぶために、広範囲なコーパスで事前訓練されている。
このプロセスは、社会においてバイアスや一般的なステレオタイプを取得するこれらのモデルに必然的に導かれる可能性がある。
本稿では,職業代名詞の性別バイアスを軽減する知識編集手法LSDMを提案する。
論文 参考訳(メタデータ) (2024-03-21T13:57:43Z) - Disclosure and Mitigation of Gender Bias in LLMs [64.79319733514266]
大規模言語モデル(LLM)はバイアス応答を生成することができる。
条件生成に基づく間接探索フレームワークを提案する。
LLMにおける明示的・暗黙的な性バイアスを明らかにするための3つの戦略を探求する。
論文 参考訳(メタデータ) (2024-02-17T04:48:55Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
大規模言語モデル(LLM)はバイアスと有害な応答を生成する。
本研究では,あらかじめ定義されたジェンダーフレーズやステレオタイプを必要としない条件付きテキスト生成機構を提案する。
論文 参考訳(メタデータ) (2023-11-01T05:31:46Z) - Gender bias and stereotypes in Large Language Models [0.6882042556551611]
本稿では,ジェンダーステレオタイプに関する大規模言語モデルの振る舞いについて考察する。
我々は、WinoBiasとは違って、性別バイアスの存在をテストするための単純なパラダイムを用いています。
a) LLMは、人の性別とステレオタイプ的に一致した職業を選択する確率が3~6倍、(b) これらの選択は、公務員の統計に反映された基礎的真実よりも人々の知覚に適合し、(d) LLMは、我々の研究項目の95%の時間において重要な曖昧さを無視する。
論文 参考訳(メタデータ) (2023-08-28T22:32:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。