TROPE: TRaining-Free Object-Part Enhancement for Seamlessly Improving Fine-Grained Zero-Shot Image Captioning
- URL: http://arxiv.org/abs/2409.19960v2
- Date: Sat, 2 Nov 2024 05:42:57 GMT
- Title: TROPE: TRaining-Free Object-Part Enhancement for Seamlessly Improving Fine-Grained Zero-Shot Image Captioning
- Authors: Joshua Feinglass, Yezhou Yang,
- Abstract summary: We introduce TRaining-Free Object-Part Enhancement (TROPE)
TROPE enriches a base caption with additional object-part details using object detector proposals and Natural Language Processing techniques.
Our evaluations show that TROPE consistently boosts performance across all tested zero-shot IC approaches and achieves state-of-the-art results on fine-grained IC datasets.
- Score: 30.506968671472517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-shot inference, where pre-trained models perform tasks without specific training data, is an exciting emergent ability of large models like CLIP. Although there has been considerable exploration into enhancing zero-shot abilities in image captioning (IC) for popular datasets such as MSCOCO and Flickr8k, these approaches fall short with fine-grained datasets like CUB, FLO, UCM-Captions, and Sydney-Captions. These datasets require captions to discern between visually and semantically similar classes, focusing on detailed object parts and their attributes. To overcome this challenge, we introduce TRaining-Free Object-Part Enhancement (TROPE). TROPE enriches a base caption with additional object-part details using object detector proposals and Natural Language Processing techniques. It complements rather than alters the base caption, allowing seamless integration with other captioning methods and offering users enhanced flexibility. Our evaluations show that TROPE consistently boosts performance across all tested zero-shot IC approaches and achieves state-of-the-art results on fine-grained IC datasets.
Related papers
- TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between text and visual modalities to learn representations.
We show that generating hard'' negative captions via in-context learning and corresponding negative images with text-to-image generators offers a solution.
We demonstrate that our method, named TripletCLIP, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark.
arXiv Detail & Related papers (2024-11-04T19:24:59Z) - CLIP-SCGI: Synthesized Caption-Guided Inversion for Person Re-Identification [9.996589403019675]
Person re-identification (ReID) has recently benefited from large pretrained vision-language models such as Contrastive Language-Image Pre-Training (CLIP)
We propose one straightforward solution by leveraging existing image captioning models to generate pseudo captions for person images.
We introduce CLIP-SCGI, a framework that leverages synthesized captions to guide the learning of discriminative and robust representations.
arXiv Detail & Related papers (2024-10-12T06:24:33Z) - Adaptive Masking Enhances Visual Grounding [12.793586888511978]
We propose IMAGE, Interpretative MAsking with Gaussian radiation modEling, to enhance vocabulary grounding in low-shot learning scenarios.
We evaluate the efficacy of our approach on benchmark datasets, including COCO and ODinW, demonstrating its superior performance in zero-shot and few-shot tasks.
arXiv Detail & Related papers (2024-10-04T05:48:02Z) - CIC-BART-SSA: Controllable Image Captioning with Structured Semantic Augmentation [9.493755431645313]
We propose a novel, fully automatic method to sample additional focused and visually grounded captions.
We leverage Abstract Meaning Representation (AMR) to encode all possible semantic-semantic relations between entities.
We then develop a new model, CIC-BART-SSA, that sources its control signals from SSA-diversified datasets.
arXiv Detail & Related papers (2024-07-16T05:26:12Z) - Leveraging Cross-Modal Neighbor Representation for Improved CLIP Classification [54.96876797812238]
We present a novel CrOss-moDal nEighbor Representation(CODER) based on the distance structure between images and their neighbor texts.
The key to construct a high-quality CODER lies in how to create a vast amount of high-quality and diverse texts to match with images.
Experiment results across various datasets and models confirm CODER's effectiveness.
arXiv Detail & Related papers (2024-04-27T02:04:36Z) - Zero-Shot Visual Classification with Guided Cropping [9.321383320998262]
We propose an off-the-shelf zero-shot object detection model in a preprocessing step to increase focus of zero-shot classifier to the object of interest.
We empirically show that our approach improves zero-shot classification results across architectures and datasets, favorably for small objects.
arXiv Detail & Related papers (2023-09-12T20:09:12Z) - ASPIRE: Language-Guided Data Augmentation for Improving Robustness Against Spurious Correlations [43.323791505213634]
ASPIRE (Language-guided Data Augmentation for SPurIous correlation REmoval) is a solution for supplementing the training dataset with images without spurious features.
It can generate non-spurious images without requiring any group labeling or existing non-spurious images in the training set.
It improves the worst-group classification accuracy of prior methods by 1% - 38%.
arXiv Detail & Related papers (2023-08-19T20:18:15Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Prefix Conditioning Unifies Language and Label Supervision [84.11127588805138]
We show that dataset biases negatively affect pre-training by reducing the generalizability of learned representations.
In experiments, we show that this simple technique improves the performance in zero-shot image recognition accuracy and robustness to the image-level distribution shift.
arXiv Detail & Related papers (2022-06-02T16:12:26Z) - Injecting Semantic Concepts into End-to-End Image Captioning [61.41154537334627]
We propose a pure vision transformer-based image captioning model, dubbed as ViTCAP, in which grid representations are used without extracting the regional features.
For improved performance, we introduce a novel Concept Token Network (CTN) to predict the semantic concepts and then incorporate them into the end-to-end captioning.
In particular, the CTN is built on the basis of a vision transformer and is designed to predict the concept tokens through a classification task.
arXiv Detail & Related papers (2021-12-09T22:05:05Z) - Generating More Pertinent Captions by Leveraging Semantics and Style on
Multi-Source Datasets [56.018551958004814]
This paper addresses the task of generating fluent descriptions by training on a non-uniform combination of data sources.
Large-scale datasets with noisy image-text pairs provide a sub-optimal source of supervision.
We propose to leverage and separate semantics and descriptive style through the incorporation of a style token and keywords extracted through a retrieval component.
arXiv Detail & Related papers (2021-11-24T19:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.