論文の概要: Enhancing Security Using Random Binary Weights in Privacy-Preserving Federated Learning
- arxiv url: http://arxiv.org/abs/2409.19988v1
- Date: Mon, 30 Sep 2024 06:28:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:57:30.934197
- Title: Enhancing Security Using Random Binary Weights in Privacy-Preserving Federated Learning
- Title(参考訳): プライバシー保護フェデレーション学習におけるランダム二元重みを用いたセキュリティ強化
- Authors: Hiroto Sawada, Shoko Imaizumi, Hitoshi Kiya,
- Abstract要約: 視覚変換器を用いたプライバシー保護フェデレーション学習におけるセキュリティ向上手法を提案する。
連合学習では、各クライアントから生データを収集することなく更新情報を収集して学習を行う。
提案手法の有効性は, APRIL (Attention PRIvacy Leakage) 修復攻撃に対するモデル性能と抵抗の観点から確認した。
- 参考スコア(独自算出の注目度): 5.311735227179715
- License:
- Abstract: In this paper, we propose a novel method for enhancing security in privacy-preserving federated learning using the Vision Transformer. In federated learning, learning is performed by collecting updated information without collecting raw data from each client. However, the problem is that this raw data may be inferred from the updated information. Conventional data-guessing countermeasures (security enhancement methods) for addressing this issue have a trade-off relationship between privacy protection strength and learning efficiency, and they generally degrade model performance. In this paper, we propose a novel method of federated learning that does not degrade model performance and that is robust against data-guessing attacks on updated information. In the proposed method, each client independently prepares a sequence of binary (0 or 1) random numbers, multiplies it by the updated information, and sends it to a server for model learning. In experiments, the effectiveness of the proposed method is confirmed in terms of model performance and resistance to the APRIL (Attention PRIvacy Leakage) restoration attack.
- Abstract(参考訳): 本論文では,視覚変換器を用いたプライバシー保護フェデレーション学習におけるセキュリティ向上手法を提案する。
連合学習では、各クライアントから生データを収集することなく更新情報を収集して学習を行う。
しかし、問題は、更新された情報からこの生データを推測することである。
この問題に対処するための従来のデータゲスティング対策(セキュリティ強化手法)は、プライバシ保護強度と学習効率のトレードオフ関係を持ち、一般的にモデル性能を低下させる。
本稿では,モデル性能を劣化させることなく,更新情報に対するデータゲスティング攻撃に対して堅牢なフェデレーション学習手法を提案する。
提案手法では,各クライアントが独立に2進数 (0 または 1) の乱数列を作成し,更新した情報で乗算し,モデル学習のためにサーバに送信する。
実験では,APRIL(Attention PRIvacy Leakage)修復攻撃に対するモデル性能と抵抗性の観点から,提案手法の有効性を確認した。
関連論文リスト
- Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
ディープジェネレータ技術は、区別がつかない高品質のフェイクビデオを制作し、深刻な社会的脅威をもたらす可能性がある。
従来の偽造検出手法は、データを直接集中的に訓練する。
本稿では,個人化表現を用いた新しいフェデレーション顔偽造検出学習を提案する。
論文 参考訳(メタデータ) (2024-06-17T02:20:30Z) - Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
本稿では,フェデレーションモデルにおける敵ユーザの戦略的排除に焦点を当てた,新たなフレームワークを提案する。
我々は、ローカルトレーニングインスタンスが収集したメタデータと差分プライバシー技術を統合することにより、フェデレートアルゴリズムのアグリゲーションフェーズにおける異常を検出する。
提案手法の有効性を実証し,ユーザのプライバシとモデル性能を維持しながらデータ汚染のリスクを大幅に軽減する。
論文 参考訳(メタデータ) (2024-04-19T10:36:00Z) - Privacy-Preserving Federated Unlearning with Certified Client Removal [18.36632825624581]
未学習の最先端の方法は、勾配や局所的に訓練されたモデルなど、FLクライアントからの履歴データを使用する。
本稿では,二要素計算(Two-Party Computation, 2PC)技術を用いたプライバシー保護フェデレーション・アンラーニング手法であるStarfishを提案する。
論文 参考訳(メタデータ) (2024-04-15T12:27:07Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
フェデレーション・インストラクション・チューニング(FedIT)は、複数のデータ所有者間で協調的なトレーニングを統合することで、有望なソリューションである。
FedITは、インストラクショナルデータの不足や、トレーニングデータ抽出攻撃への露出リスクなどの制限に直面している。
本稿では,FewFedPITを提案する。このFewFedPITは,フェデレートされた数ショット学習のプライバシー保護とモデル性能を同時に向上する。
論文 参考訳(メタデータ) (2024-03-10T08:41:22Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Aggregation Service for Federated Learning: An Efficient, Secure, and
More Resilient Realization [22.61730495802799]
本稿では,学習過程を通じて個々のモデル更新を効率よく保護するシステム設計を提案する。
本システムは,実用性能で,ベースラインに匹敵する精度を実現している。
論文 参考訳(メタデータ) (2022-02-04T05:03:46Z) - Federated Unlearning with Knowledge Distillation [9.666514931140707]
フェデレートラーニング(FL)は、トレーニングプロセス中に各クライアントのデータプライバシを保護するように設計されている。
忘れられる権利に関する最近の法律では、FLモデルが各クライアントから学んだことを忘れる能力を持つことが不可欠である。
モデルから蓄積した履歴更新を減じることで,クライアントの貢献を解消する,新たなフェデレーション付きアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-01-24T03:56:20Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。