Enhancing Security Using Random Binary Weights in Privacy-Preserving Federated Learning
- URL: http://arxiv.org/abs/2409.19988v1
- Date: Mon, 30 Sep 2024 06:28:49 GMT
- Title: Enhancing Security Using Random Binary Weights in Privacy-Preserving Federated Learning
- Authors: Hiroto Sawada, Shoko Imaizumi, Hitoshi Kiya,
- Abstract summary: We propose a novel method for enhancing security in privacy-preserving federated learning using the Vision Transformer.
In federated learning, learning is performed by collecting updated information without collecting raw data from each client.
The effectiveness of the proposed method is confirmed in terms of model performance and resistance to the APRIL (Attention PRIvacy Leakage) restoration attack.
- Score: 5.311735227179715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel method for enhancing security in privacy-preserving federated learning using the Vision Transformer. In federated learning, learning is performed by collecting updated information without collecting raw data from each client. However, the problem is that this raw data may be inferred from the updated information. Conventional data-guessing countermeasures (security enhancement methods) for addressing this issue have a trade-off relationship between privacy protection strength and learning efficiency, and they generally degrade model performance. In this paper, we propose a novel method of federated learning that does not degrade model performance and that is robust against data-guessing attacks on updated information. In the proposed method, each client independently prepares a sequence of binary (0 or 1) random numbers, multiplies it by the updated information, and sends it to a server for model learning. In experiments, the effectiveness of the proposed method is confirmed in terms of model performance and resistance to the APRIL (Attention PRIvacy Leakage) restoration attack.
Related papers
- Efficient Federated Unlearning with Adaptive Differential Privacy Preservation [15.8083997286637]
Federated unlearning (FU) offers a promising solution to erase the impact of specific clients' data on the global model in federated learning (FL)
Current state-of-the-art FU methods extend traditional FL frameworks by leveraging stored historical updates.
We propose FedADP, a method designed to achieve both efficiency and privacy preservation in FU.
arXiv Detail & Related papers (2024-11-17T11:45:15Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
This paper introduces a novel framework focused on the strategic elimination of adversarial users within a federated model.
We detect anomalies in the aggregation phase of the Federated Algorithm, by integrating metadata gathered by the local training instances with Differential Privacy techniques.
Our experiments demonstrate the efficacy of our methods, significantly mitigating the risk of data poisoning while maintaining user privacy and model performance.
arXiv Detail & Related papers (2024-04-19T10:36:00Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Aggregation Service for Federated Learning: An Efficient, Secure, and
More Resilient Realization [22.61730495802799]
We present a system design which offers efficient protection of individual model updates throughout the learning procedure.
Our system achieves accuracy comparable to the baseline, with practical performance.
arXiv Detail & Related papers (2022-02-04T05:03:46Z) - Federated Unlearning with Knowledge Distillation [9.666514931140707]
Federated Learning (FL) is designed to protect the data privacy of each client during the training process.
With the recent legislation on right to be forgotten, it is crucially essential for the FL model to possess the ability to forget what it has learned from each client.
We propose a novel federated unlearning method to eliminate a client's contribution by subtracting the accumulated historical updates from the model.
arXiv Detail & Related papers (2022-01-24T03:56:20Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.