Robust Multi-view Co-expression Network Inference
- URL: http://arxiv.org/abs/2409.19991v1
- Date: Mon, 30 Sep 2024 06:30:09 GMT
- Title: Robust Multi-view Co-expression Network Inference
- Authors: Teodora Pandeva, Martijs Jonker, Leendert Hamoen, Joris Mooij, Patrick Forré,
- Abstract summary: Inferring gene co-expression networks from transcriptome data presents many challenges.
We introduce a robust method for high-dimensional graph inference from multiple independent studies.
- Score: 8.697303234009528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unraveling the co-expression of genes across studies enhances the understanding of cellular processes. Inferring gene co-expression networks from transcriptome data presents many challenges, including spurious gene correlations, sample correlations, and batch effects. To address these complexities, we introduce a robust method for high-dimensional graph inference from multiple independent studies. We base our approach on the premise that each dataset is essentially a noisy linear mixture of gene loadings that follow a multivariate $t$-distribution with a sparse precision matrix, which is shared across studies. This allows us to show that we can identify the co-expression matrix up to a scaling factor among other model parameters. Our method employs an Expectation-Maximization procedure for parameter estimation. Empirical evaluation on synthetic and gene expression data demonstrates our method's improved ability to learn the underlying graph structure compared to baseline methods.
Related papers
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
We present an innovative approach utilizing data-driven computational tools, leveraging an advanced Transformer model, to unearth gene-gene interactions.
A novel weighted diversified sampling algorithm computes the diversity score of each data sample in just two passes of the dataset.
arXiv Detail & Related papers (2024-10-21T03:35:23Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity.
arXiv Detail & Related papers (2024-07-03T10:31:30Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - A Graphical Model for Fusing Diverse Microbiome Data [2.385985842958366]
We introduce a flexible multinomial-Gaussian generative model for jointly modeling such count data.
We present a computationally scalable variational Expectation-Maximization (EM) algorithm for inferring the latent variables and the parameters of the model.
arXiv Detail & Related papers (2022-08-21T17:54:39Z) - Orthogonalization of data via Gromov-Wasserstein type feedback for
clustering and visualization [5.44192123671277]
We propose an adaptive approach for clustering and visualization of data by an orthogonalization process.
We prove that the method converges globally to a unique fixpoint for certain parameter values.
We confirm that the method produces biologically meaningful clustering results consistent with human expert classification.
arXiv Detail & Related papers (2022-07-25T15:52:11Z) - Natural language processing for clusterization of genes according to
their functions [62.997667081978825]
We propose an approach that reduces the analysis of several thousand genes to analysis of several clusters.
The descriptions are encoded as vectors using the pretrained language model (BERT) and some text processing approaches.
arXiv Detail & Related papers (2022-07-17T12:59:34Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
We are interested in learning probabilistic generative models from high-dimensional heterogeneous data in an unsupervised fashion.
We propose a general framework that combines disparate data types through the exponential family of distributions.
The proposed algorithm is presented in detail for the commonly encountered heterogeneous datasets with real-valued (Gaussian) and categorical (multinomial) features.
arXiv Detail & Related papers (2021-08-27T18:10:31Z) - Multi-modal Graph Learning for Disease Prediction [35.4310911850558]
We propose an end-to-end Multimodal Graph Learning framework (MMGL) for disease prediction.
Instead of defining the adjacency matrix manually as existing methods, the latent graph structure can be captured through a novel way of adaptive graph learning.
arXiv Detail & Related papers (2021-07-01T03:59:22Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - A Novel Granular-Based Bi-Clustering Method of Deep Mining the
Co-Expressed Genes [76.84066556597342]
Bi-clustering methods are used to mine bi-clusters whose subsets of samples (genes) are co-regulated under their test conditions.
Unfortunately, traditional bi-clustering methods are not fully effective in discovering such bi-clusters.
We propose a novel bi-clustering method by involving here the theory of Granular Computing.
arXiv Detail & Related papers (2020-05-12T02:04:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.