論文の概要: Do Influence Functions Work on Large Language Models?
- arxiv url: http://arxiv.org/abs/2409.19998v1
- Date: Mon, 30 Sep 2024 06:50:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:07:09.130518
- Title: Do Influence Functions Work on Large Language Models?
- Title(参考訳): 影響関数は大規模言語モデルで機能するか?
- Authors: Zhe Li, Wei Zhao, Yige Li, Jun Sun,
- Abstract要約: 影響関数は、個々のトレーニングデータポイントがモデルの予測に与える影響を定量化することを目的としている。
我々は,複数のタスクにまたがる影響関数を評価し,ほとんどの設定において不整合なパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 10.463762448166714
- License:
- Abstract: Influence functions aim to quantify the impact of individual training data points on a model's predictions. While extensive research has been conducted on influence functions in traditional machine learning models, their application to large language models (LLMs) has been limited. In this work, we conduct a systematic study to address a key question: do influence functions work on LLMs? Specifically, we evaluate influence functions across multiple tasks and find that they consistently perform poorly in most settings. Our further investigation reveals that their poor performance can be attributed to: (1) inevitable approximation errors when estimating the iHVP component due to the scale of LLMs, (2) uncertain convergence during fine-tuning, and, more fundamentally, (3) the definition itself, as changes in model parameters do not necessarily correlate with changes in LLM behavior. Our study thus suggests the need for alternative approaches for identifying influential samples. To support future work, our code is made available at https://github.com/plumprc/Failures-of-Influence-Functions-in-LLMs.
- Abstract(参考訳): 影響関数は、個々のトレーニングデータポイントがモデルの予測に与える影響を定量化することを目的としている。
従来の機械学習モデルにおける影響関数について広範な研究が行われてきたが、その大規模言語モデル(LLM)への応用は限られている。
本研究では,LLMに作用する影響関数について,重要な問題に対処するための系統的研究を行う。
具体的には、複数のタスクにまたがる影響関数を評価し、ほとんどの設定で一貫して性能が劣っていることを確かめる。
1)LLMのスケールによってiHVP成分を推定する際の避けられない近似誤差,(2)微調整中の不確実な収束,(3)モデルパラメータの変化がLLMの挙動の変化と必ずしも相関しないため,その定義そのものが明確になる。
本研究は,有効なサンプルを同定するための代替アプローチの必要性を示唆するものである。
今後の作業をサポートするため、私たちのコードはhttps://github.com/plumprc/Failures-of-Influence-Functions-in-LLMsで利用可能です。
関連論文リスト
- Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は、システムの異なる部分への介入の下で因果効果を推定することができる。
LLMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを実証分析して評価する。
我々は、様々な因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成し、介入に基づく推論の研究を可能にする。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - CogBench: a large language model walks into a psychology lab [12.981407327149679]
本稿では,7つの認知心理学実験から得られた10の行動指標を含むベンチマークであるCogBenchを紹介する。
本稿では,CagBenchを35大言語モデル(LLM)に適用し,統計的多レベルモデリング手法を用いて解析する。
オープンソースモデルは、プロプライエタリなモデルよりもリスクが高く、コードの微調整は必ずしもLLMの振舞いを促進しない。
論文 参考訳(メタデータ) (2024-02-28T10:43:54Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Studying Large Language Model Generalization with Influence Functions [29.577692176892135]
モデルパラメータ(とそれによる出力)は、トレーニングセットにシーケンスが追加された場合、どのように変化するのか?
我々はEigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-FAC)近似を用いて、最大52億のパラメータを持つ大規模言語モデル(LLM)まで影響関数をスケールする。
本研究では, LLMの一般化パターンについて検討し, 影響パターンの空間性, スケールによる抽象化の増大, 数学とプログラミングの能力, 言語間一般化, ロールプレイング行動などを検討した。
論文 参考訳(メタデータ) (2023-08-07T04:47:42Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - If Influence Functions are the Answer, Then What is the Question? [7.873458431535409]
影響関数は、モデルの学習パラメータに対する1つのトレーニングデータポイントの除去の効果を効率的に推定する。
影響推定は線形モデルの残余再トレーニングとよく一致しているが、最近の研究では、ニューラルネットワークではこのアライメントが不十分であることが示されている。
論文 参考訳(メタデータ) (2022-09-12T16:17:43Z) - FastIF: Scalable Influence Functions for Efficient Model Interpretation
and Debugging [112.19994766375231]
影響関数は、テスト予測のためのトレーニングデータポイントの「影響」を近似する。
fastifは、実行時間を大幅に改善する関数に影響を与えるための、単純な修正セットです。
本実験はモデル解釈とモデル誤差の修正における影響関数の可能性を示す。
論文 参考訳(メタデータ) (2020-12-31T18:02:34Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
影響関数は、テスト時間予測におけるサンプルの効果を近似する。
影響評価は浅いネットワークでは かなり正確です
ヘッセン正則化は、高品質な影響推定を得るために重要である。
論文 参考訳(メタデータ) (2020-06-25T18:25:59Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
影響関数は、影響力のあるトレーニング例を特定することによって、モデルの判断を説明する。
本稿では,代表課題における影響関数と共通単語順応法の比較を行う。
我々は,学習データ中の成果物を明らかにすることができる影響関数に基づく新しい尺度を開発した。
論文 参考訳(メタデータ) (2020-05-14T00:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。