論文の概要: Dissecting Misalignment of Multimodal Large Language Models via Influence Function
- arxiv url: http://arxiv.org/abs/2411.11667v1
- Date: Mon, 18 Nov 2024 15:45:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:36:12.993206
- Title: Dissecting Misalignment of Multimodal Large Language Models via Influence Function
- Title(参考訳): 影響関数による多モーダル大言語モデルの解離ミスアライメント
- Authors: Lijie Hu, Chenyang Ren, Huanyi Xie, Khouloud Saadi, Shu Yang, Jingfeng Zhang, Di Wang,
- Abstract要約: コントラスト損失に対する拡張影響関数 (ECIF) を導入し, コントラスト損失に対する影響関数について検討した。
ECIFは正と負の両方のサンプルを考慮し、対照的な学習モデルの閉形式近似を提供する。
ECIFを基盤として,MLLMにおけるデータ評価,誤アライメント検出,誤予測トレースバックタスクなどの一連のアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 12.832792175138241
- License:
- Abstract: Multi-modal Large Language models (MLLMs) are always trained on data from diverse and unreliable sources, which may contain misaligned or mislabeled text-image pairs. This frequently causes robustness issues and hallucinations, leading to performance degradation. Data valuation is an efficient way to detect and trace these misalignments. Nevertheless, existing methods are computationally expensive for MLLMs. While computationally efficient, the classical influence functions are inadequate for contrastive learning models because they were originally designed for pointwise loss. Additionally, contrastive learning involves minimizing the distance between the modalities of positive samples and maximizing the distance between the modalities of negative samples. This requires us to evaluate the influence of samples from both perspectives. To tackle these challenges, we introduce the Extended Influence Function for Contrastive Loss (ECIF), an influence function crafted for contrastive loss. ECIF considers both positive and negative samples and provides a closed-form approximation of contrastive learning models, eliminating the need for retraining. Building upon ECIF, we develop a series of algorithms for data evaluation in MLLM, misalignment detection, and misprediction trace-back tasks. Experimental results demonstrate our ECIF advances the transparency and interpretability of MLLMs by offering a more accurate assessment of data impact and model alignment compared to traditional baseline methods.
- Abstract(参考訳): MLLM(Multi-modal Large Language Model)は、多種多様で信頼性の低いデータに基づいて訓練される。
これはしばしば堅牢性の問題と幻覚を引き起こし、パフォーマンスが低下する。
データ評価は、これらの不一致を検出し、追跡する効率的な方法である。
しかし、既存の手法はMLLMにとって計算コストが高い。
計算効率は高いが、古典的な影響関数は、本来はポイントワイド・ロスのために設計されたため、対照的な学習モデルには不十分である。
さらに、対照的な学習は、正のサンプルのモダリティ間の距離を最小化し、負のサンプルのモダリティ間の距離を最大化する。
両視点からサンプルの影響を評価する必要がある。
これらの課題に対処するために、コントラスト的損失に対する拡張影響関数(ECIF)を導入する。
ECIFは、正と負の両方のサンプルを考慮し、対照的な学習モデルのクローズドフォーム近似を提供し、再学習の必要性を排除している。
ECIFを基盤として,MLLMにおけるデータ評価,誤アライメント検出,誤予測トレースバックタスクなどの一連のアルゴリズムを開発した。
実験の結果,従来のベースライン法と比較して,データの影響やモデルアライメントをより正確に評価することで,MLLMの透明性と解釈可能性を向上させることができた。
関連論文リスト
- Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
Debias and Denoise Attribution (DDA) と呼ばれる新しいトレーニングデータ属性法を導入する。
提案手法は既存のアプローチよりも優れており,平均91.64%のAUCを実現している。
DDAは、様々なソースとLLaMA2、QWEN2、Mistralのような異なるスケールのモデルに対して、強力な汎用性とスケーラビリティを示す。
論文 参考訳(メタデータ) (2024-10-02T07:14:26Z) - Outlier Gradient Analysis: Efficiently Identifying Detrimental Training Samples for Deep Learning Models [36.05242956018461]
本稿では,影響関数と外乱勾配検出による有害トレーニングサンプルの同定とを橋渡しする。
まず, 合成データセットにおける外乱勾配解析手法の仮説を検証した。
次に、視覚モデルにおける誤ラベルサンプルの検出と、自然言語処理トランスフォーマーモデルの性能向上のためのデータサンプル選択の有効性を示す。
論文 参考訳(メタデータ) (2024-05-06T21:34:46Z) - The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes [30.30769701138665]
我々は、訓練データとテストデータの間の相互影響を浮き彫りにして、ミラーレッド影響仮説を導入し、探求する。
具体的には、テスト予測に対するトレーニングデータの影響を評価することは、等価だが逆問題として再定義することができることを示唆している。
トレーニングポイント毎に前方パスとペアを組むことで,特定のテストサンプルの勾配を計算し,トレーニングデータの影響を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-14T03:43:05Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
データ不足は機械学習(ML)モデリングの課題となる可能性がある。
現在のアプローチは、特徴計算とラベル予測に分類される。
本研究は、観測データに欠落した値でモデル化するコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T13:16:24Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - Rethinking Prototypical Contrastive Learning through Alignment,
Uniformity and Correlation [24.794022951873156]
我々は、アライメント、均一性、相関(PAUC)を通して、プロトタイプ表現を学ぶことを提案する。
具体的には,(1)正の原型から埋め込みを抽出するアライメント損失,(2)原型レベルの特徴を均一に分配するアライメント損失,(3)原型レベルの特徴間の多様性と識別性を増大させる相関損失を補正する。
論文 参考訳(メタデータ) (2022-10-18T22:33:12Z) - Practical Insights of Repairing Model Problems on Image Classification [3.2932371462787513]
ディープラーニングモデルの追加トレーニングは、結果にネガティブな影響をもたらし、初期正のサンプルを負のサンプルに変える(劣化)。
本稿では, 劣化低減手法の比較から得られた影響について述べる。
その結果、実践者は、AIシステムのデータセットの可用性とライフサイクルを継続的に考慮し、より良い方法に気を配るべきであることが示唆された。
論文 参考訳(メタデータ) (2022-05-14T19:28:55Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
コントラスト学習を微調整に適用することでさらにメリットが得られるか検討する。
本研究では,コントラスト正規化調律(core-tuning)を提案する。
論文 参考訳(メタデータ) (2021-02-12T16:31:24Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
影響関数は、テスト時間予測におけるサンプルの効果を近似する。
影響評価は浅いネットワークでは かなり正確です
ヘッセン正則化は、高品質な影響推定を得るために重要である。
論文 参考訳(メタデータ) (2020-06-25T18:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。