論文の概要: Customized Information and Domain-centric Knowledge Graph Construction with Large Language Models
- arxiv url: http://arxiv.org/abs/2409.20010v1
- Date: Mon, 30 Sep 2024 07:08:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 16:08:18.095298
- Title: Customized Information and Domain-centric Knowledge Graph Construction with Large Language Models
- Title(参考訳): 大規模言語モデルを用いたカスタマイズ情報とドメイン中心知識グラフの構築
- Authors: Frank Wawrzik, Matthias Plaue, Savan Vekariya, Christoph Grimm,
- Abstract要約: 本稿では,構造化情報へのタイムリーなアクセスを実現するための知識グラフに基づく新しいアプローチを提案する。
本フレームワークは,情報検索,キーフレーズ抽出,セマンティックネットワーク生成,トピックマップ可視化などを含むテキストマイニングプロセスを含む。
当社の方法論を自動車電気システムの領域に適用して,スケーラブルなアプローチを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we propose a novel approach based on knowledge graphs to provide timely access to structured information, to enable actionable technology intelligence, and improve cyber-physical systems planning. Our framework encompasses a text mining process, which includes information retrieval, keyphrase extraction, semantic network creation, and topic map visualization. Following this data exploration process, we employ a selective knowledge graph construction (KGC) approach supported by an electronics and innovation ontology-backed pipeline for multi-objective decision-making with a focus on cyber-physical systems. We apply our methodology to the domain of automotive electrical systems to demonstrate the approach, which is scalable. Our results demonstrate that our construction process outperforms GraphGPT as well as our bi-LSTM and transformer REBEL with a pre-defined dataset by several times in terms of class recognition, relationship construction and correct "sublass of" categorization. Additionally, we outline reasoning applications and provide a comparison with Wikidata to show the differences and advantages of the approach.
- Abstract(参考訳): 本稿では,構造化情報へのタイムリーなアクセス,実用的な技術インテリジェンスの実現,サイバー物理システム計画の改善を目的とした知識グラフに基づく新しいアプローチを提案する。
本フレームワークは,情報検索,キーフレーズ抽出,セマンティックネットワーク生成,トピックマップ可視化などを含むテキストマイニングプロセスを含む。
このデータ探索プロセスの後、我々は、サイバー物理システムに焦点を当てた多目的意思決定のための電子・イノベーションオントロジー支援パイプラインによって支援された選択知識グラフ構築(KGC)アプローチを採用する。
当社の方法論を自動車電気システムの領域に適用して,スケーラブルなアプローチを実証する。
以上の結果から,グラフGPTとバイLSTMおよびトランスフォーマーREBELを,クラス認識,関係構築,正しい「サブクラス」分類において,事前に定義したデータセットで複数回上回る結果が得られた。
さらに、推論アプリケーションの概要と、Wikidataとの比較を行い、アプローチの違いと利点を示す。
関連論文リスト
- Hierarchical Knowledge Graph Construction from Images for Scalable E-Commerce [17.97354500453661]
生の製品画像から構造化された製品知識グラフを構築するための新しい手法を提案する。
この手法は視覚言語モデル(VLM)と大規模言語モデル(LLM)の最近の進歩を協調的に活用する。
論文 参考訳(メタデータ) (2024-10-28T17:34:05Z) - Redefining Data-Centric Design: A New Approach with a Domain Model and Core Data Ontology for Computational Systems [2.872069347343959]
本稿では,新しい情報ドメインモデルを導入することにより,計算システムを設計するための革新的なデータ中心パラダイムを提案する。
提案モデルは従来のノード中心のフレームワークから離れ、オブジェクト、イベント、コンセプト、アクションを組み込んだマルチモーダルアプローチを使用して、データ中心の分類に焦点を当てている。
論文 参考訳(メタデータ) (2024-09-01T22:34:12Z) - Towards Next-Generation Urban Decision Support Systems through AI-Powered Construction of Scientific Ontology using Large Language Models -- A Case in Optimizing Intermodal Freight Transportation [1.6230958216521798]
本研究では,事前学習された大規模言語モデル(LLM)を活用する可能性について検討する。
推論コアとしてChatGPT APIを採用することで、自然言語処理、メソノロジーベースのプロンプトチューニング、トランスフォーマーを含む統合ワークフローを概説する。
我々の方法論の成果は、広く採用されているオントロジー言語(OWL、RDF、SPARQLなど)の知識グラフである。
論文 参考訳(メタデータ) (2024-05-29T16:40:31Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
既存のマルチモーダル関係抽出(MRE)研究は、内部情報過剰利用と外部情報過多という2つの共存課題に直面している。
内部情報スクリーニングと外部情報活用を同時に実現する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-19T14:56:57Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
コンテキスト対応グラフアテンションモデル(Context-aware GAT)を提案する。
これは、コンテキスト強化された知識集約機構を通じて、関連する知識グラフからグローバルな特徴を同化する。
実験により,本フレームワークは従来のGNNベース言語モデルよりも性能が優れていることが示された。
論文 参考訳(メタデータ) (2023-05-10T16:31:35Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - An energy-based model for neuro-symbolic reasoning on knowledge graphs [0.0]
産業自動化システムを特徴付けるためのエネルギーベースのグラフ埋め込みアルゴリズムを提案する。
複数のドメインからの知識を組み合わせることで、学習モデルはコンテキスト対応の予測を行うことができる。
提示されたモデルは、生物学的にインスパイアされたニューラルアーキテクチャにマッピング可能であり、グラフ埋め込み法とニューロモルフィックコンピューティングの間の最初のブリッジとして機能する。
論文 参考訳(メタデータ) (2021-10-04T18:02:36Z) - Graph signal processing for machine learning: A review and new
perspectives [57.285378618394624]
本稿では,GSPの概念とツール,例えばグラフフィルタや変換による新しい機械学習アルゴリズム開発への重要な貢献について概説する。
本稿では,データ構造とリレーショナル事前の活用,データと計算効率の向上,モデル解釈可能性の向上について論じる。
我々は,応用数学と信号処理の橋渡しとなるGSP技術と,他方の機械学習とネットワーク科学の橋渡しとなる新たな視点を提供する。
論文 参考訳(メタデータ) (2020-07-31T13:21:33Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。