Mitigating Propensity Bias of Large Language Models for Recommender Systems
- URL: http://arxiv.org/abs/2409.20052v1
- Date: Mon, 30 Sep 2024 07:57:13 GMT
- Title: Mitigating Propensity Bias of Large Language Models for Recommender Systems
- Authors: Guixian Zhang, Guan Yuan, Debo Cheng, Lin Liu, Jiuyong Li, Shichao Zhang,
- Abstract summary: We introduce a novel framework named Counterfactual LLM Recommendation (CLLMR)
We propose a spectrum-based side information encoder that implicitly embeds structural information from historical interactions into the side information representation.
Our CLLMR approach explores the causal relationships inherent in LLM-based recommender systems.
- Score: 20.823461673845756
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid development of Large Language Models (LLMs) creates new opportunities for recommender systems, especially by exploiting the side information (e.g., descriptions and analyses of items) generated by these models. However, aligning this side information with collaborative information from historical interactions poses significant challenges. The inherent biases within LLMs can skew recommendations, resulting in distorted and potentially unfair user experiences. On the other hand, propensity bias causes side information to be aligned in such a way that it often tends to represent all inputs in a low-dimensional subspace, leading to a phenomenon known as dimensional collapse, which severely restricts the recommender system's ability to capture user preferences and behaviours. To address these issues, we introduce a novel framework named Counterfactual LLM Recommendation (CLLMR). Specifically, we propose a spectrum-based side information encoder that implicitly embeds structural information from historical interactions into the side information representation, thereby circumventing the risk of dimension collapse. Furthermore, our CLLMR approach explores the causal relationships inherent in LLM-based recommender systems. By leveraging counterfactual inference, we counteract the biases introduced by LLMs. Extensive experiments demonstrate that our CLLMR approach consistently enhances the performance of various recommender models.
Related papers
- Generative Large Recommendation Models: Emerging Trends in LLMs for Recommendation [85.52251362906418]
This tutorial explores two primary approaches for integrating large language models (LLMs)
It provides a comprehensive overview of generative large recommendation models, including their recent advancements, challenges, and potential research directions.
Key topics include data quality, scaling laws, user behavior mining, and efficiency in training and inference.
arXiv Detail & Related papers (2025-02-19T14:48:25Z) - Semantic Convergence: Harmonizing Recommender Systems via Two-Stage Alignment and Behavioral Semantic Tokenization [10.47505806629852]
Large language models (LLMs) are adept at discerning profound user interests from historical behaviors.
We propose a novel framework that harmoniously merges traditional recommendation models with the prowess of LLMs.
We design a series of specialized supervised learning tasks aimed at aligning collaborative signals with the subtleties of natural language semantics.
arXiv Detail & Related papers (2024-12-18T12:07:58Z) - Bridging the User-side Knowledge Gap in Knowledge-aware Recommendations with Large Language Models [15.41378841915072]
Large Language Models (LLMs) offer the potential to bridge the gap by leveraging human behavior understanding and extensive real-world knowledge.
We propose an LLM-based user-side knowledge inference method alongside a carefully designed recommendation framework.
Our approach achieves state-of-the-art performance compared to competitive baselines, particularly for users with sparse interactions.
arXiv Detail & Related papers (2024-12-18T06:43:56Z) - Cognitive Biases in Large Language Models for News Recommendation [68.90354828533535]
This paper explores the potential impact of cognitive biases on large language models (LLMs) based news recommender systems.
We discuss strategies to mitigate these biases through data augmentation, prompt engineering and learning algorithms aspects.
arXiv Detail & Related papers (2024-10-03T18:42:07Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.
We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
We analyze multimodal recommender systems from the novel perspective of flat local minima.
We propose a concise yet effective gradient strategy called Mirror Gradient (MG)
We find that the proposed MG can complement existing robust training methods and be easily extended to diverse advanced recommendation models.
arXiv Detail & Related papers (2024-02-17T12:27:30Z) - Representation Learning with Large Language Models for Recommendation [33.040389989173825]
We propose a model-agnostic framework RLMRec to enhance recommenders with large language models (LLMs)empowered representation learning.
RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals.
arXiv Detail & Related papers (2023-10-24T15:51:13Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Causal Disentangled Variational Auto-Encoder for Preference
Understanding in Recommendation [50.93536377097659]
This paper introduces the Causal Disentangled Variational Auto-Encoder (CaD-VAE), a novel approach for learning causal disentangled representations from interaction data in recommender systems.
The approach utilizes structural causal models to generate causal representations that describe the causal relationship between latent factors.
arXiv Detail & Related papers (2023-04-17T00:10:56Z) - Deep Causal Reasoning for Recommendations [47.83224399498504]
A new trend in recommender system research is to negate the influence of confounders from a causal perspective.
We model the recommendation as a multi-cause multi-outcome (MCMO) inference problem.
We show that MCMO modeling may lead to high variance due to scarce observations associated with the high-dimensional causal space.
arXiv Detail & Related papers (2022-01-06T15:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.