Retrieval-Augmented Purifier for Robust LLM-Empowered Recommendation
- URL: http://arxiv.org/abs/2504.02458v1
- Date: Thu, 03 Apr 2025 10:22:30 GMT
- Title: Retrieval-Augmented Purifier for Robust LLM-Empowered Recommendation
- Authors: Liangbo Ning, Wenqi Fan, Qing Li,
- Abstract summary: Large Language Model (LLM)-empowered recommender systems have revolutionized personalized recommendation frameworks.<n>Existing LLM-empowered RecSys have been demonstrated to be highly vulnerable to minor perturbations.<n>We propose a novel framework (RETURN) by retrieving external collaborative signals to purify the poisoned user profiles.
- Score: 15.098844020816552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Large Language Model (LLM)-empowered recommender systems have revolutionized personalized recommendation frameworks and attracted extensive attention. Despite the remarkable success, existing LLM-empowered RecSys have been demonstrated to be highly vulnerable to minor perturbations. To mitigate the negative impact of such vulnerabilities, one potential solution is to employ collaborative signals based on item-item co-occurrence to purify the malicious collaborative knowledge from the user's historical interactions inserted by attackers. On the other hand, due to the capabilities to expand insufficient internal knowledge of LLMs, Retrieval-Augmented Generation (RAG) techniques provide unprecedented opportunities to enhance the robustness of LLM-empowered recommender systems by introducing external collaborative knowledge. Therefore, in this paper, we propose a novel framework (RETURN) by retrieving external collaborative signals to purify the poisoned user profiles and enhance the robustness of LLM-empowered RecSys in a plug-and-play manner. Specifically, retrieval-augmented perturbation positioning is proposed to identify potential perturbations within the users' historical sequences by retrieving external knowledge from collaborative item graphs. After that, we further retrieve the collaborative knowledge to cleanse the perturbations by using either deletion or replacement strategies and introduce a robust ensemble recommendation strategy to generate final robust predictions. Extensive experiments on three real-world datasets demonstrate the effectiveness of the proposed RETURN.
Related papers
- EAGER-LLM: Enhancing Large Language Models as Recommenders through Exogenous Behavior-Semantic Integration [60.47645731801866]
Large language models (LLMs) are increasingly leveraged as foundational backbones in advanced recommender systems.<n>LLMs are pre-trained linguistic semantics but learn collaborative semantics from scratch via the llm-Backbone.<n>We propose EAGER-LLM, a decoder-only generative recommendation framework that integrates endogenous and endogenous behavioral and semantic information in a non-intrusive manner.
arXiv Detail & Related papers (2025-02-20T17:01:57Z) - Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
We propose a new Deliberative Recommendation task, which incorporates explicit reasoning about user preferences as an additional alignment goal.<n>We then introduce the Reasoning-powered Recommender framework for deliberative user preference alignment.
arXiv Detail & Related papers (2025-02-04T07:17:54Z) - Knowledge Graph Retrieval-Augmented Generation for LLM-based Recommendation [43.505042881783446]
Large Language Models (LLMs) have yielded remarkable achievements, demonstrating their potential for the development of next-generation recommender systems.<n>LLMs face inherent limitations stemming from their LLM backbones, particularly issues of hallucinations and the lack of up-to-date and domain-specific knowledge.<n>We propose to retrieve high-quality and up-to-date structure information from the knowledge graph (KG) to augment recommendations.
arXiv Detail & Related papers (2025-01-04T08:16:23Z) - Bridging the User-side Knowledge Gap in Knowledge-aware Recommendations with Large Language Models [15.41378841915072]
Large Language Models (LLMs) offer the potential to bridge the gap by leveraging human behavior understanding and extensive real-world knowledge.<n>We propose an LLM-based user-side knowledge inference method alongside a carefully designed recommendation framework.<n>Our approach achieves state-of-the-art performance compared to competitive baselines, particularly for users with sparse interactions.
arXiv Detail & Related papers (2024-12-18T06:43:56Z) - Mitigating Propensity Bias of Large Language Models for Recommender Systems [20.823461673845756]
We introduce a novel framework named Counterfactual LLM Recommendation (CLLMR)
We propose a spectrum-based side information encoder that implicitly embeds structural information from historical interactions into the side information representation.
Our CLLMR approach explores the causal relationships inherent in LLM-based recommender systems.
arXiv Detail & Related papers (2024-09-30T07:57:13Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.<n>We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Efficient and Deployable Knowledge Infusion for Open-World Recommendations via Large Language Models [53.547190001324665]
We propose REKI to acquire two types of external knowledge about users and items from large language models (LLMs)
We develop individual knowledge extraction and collective knowledge extraction tailored for different scales of scenarios, effectively reducing offline resource consumption.
Experiments demonstrate that REKI outperforms state-of-the-art baselines and is compatible with lots of recommendation algorithms and tasks.
arXiv Detail & Related papers (2024-08-20T03:45:24Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework synergizes open-world knowledge with collaborative knowledge.<n>We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - LoRec: Large Language Model for Robust Sequential Recommendation against Poisoning Attacks [60.719158008403376]
Our research focuses on the capabilities of Large Language Models (LLMs) in the detection of unknown fraudulent activities within recommender systems.<n>We propose LoRec, an advanced framework that employs LLM-Enhanced to strengthen the robustness of sequential recommender systems.<n>Our comprehensive experiments validate that LoRec, as a general framework, significantly strengthens the robustness of sequential recommender systems.
arXiv Detail & Related papers (2024-01-31T10:35:53Z) - Empowering Few-Shot Recommender Systems with Large Language Models --
Enhanced Representations [0.0]
Large language models (LLMs) offer novel insights into tackling the few-shot scenarios encountered by explicit feedback-based recommender systems.
Our study can inspire researchers to delve deeper into the multifaceted dimensions of LLMs's involvement in recommender systems.
arXiv Detail & Related papers (2023-12-21T03:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.