論文の概要: Learning to Discover Generalized Facial Expressions
- arxiv url: http://arxiv.org/abs/2409.20098v1
- Date: Mon, 30 Sep 2024 08:50:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 18:56:57.480105
- Title: Learning to Discover Generalized Facial Expressions
- Title(参考訳): 表情の一般化を学習する
- Authors: Tingzhang Luo, Yichao Liu, Yuanyuan Liu, Andi Zhang, Xin Wang, Chang Tang, Zhe Chen,
- Abstract要約: 表情カテゴリー発見(FECD)について紹介する。
FECDは、オープンワールドの表情認識(O-FER)領域における新しい課題である
- 参考スコア(独自算出の注目度): 16.44358221618312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Facial Expression Category Discovery (FECD), a novel task in the domain of open-world facial expression recognition (O-FER). While Generalized Category Discovery (GCD) has been explored in natural image datasets, applying it to facial expressions presents unique challenges. Specifically, we identify two key biases to better understand these challenges: Theoretical Bias-arising from the introduction of new categories in unlabeled training data, and Practical Bias-stemming from the imbalanced and fine-grained nature of facial expression data. To address these challenges, we propose FER-GCD, an adversarial approach that integrates both implicit and explicit debiasing components. In the implicit debiasing process, we devise F-discrepancy, a novel metric used to estimate the upper bound of Theoretical Bias, helping the model minimize this upper bound through adversarial training. The explicit debiasing process further optimizes the feature generator and classifier to reduce Practical Bias. Extensive experiments on GCD-based FER datasets demonstrate that our FER-GCD framework significantly improves accuracy on both old and new categories, achieving an average improvement of 9.8% over the baseline and outperforming state-of-the-art methods.
- Abstract(参考訳): オープンワールド表情認識(O-FER)分野における新しい課題である表情カテゴリー発見(FECD)を紹介した。
Generalized Category Discovery (GCD)は、自然な画像データセットで研究されているが、表情に適用することはユニークな課題である。
具体的には、これらの課題をよりよく理解するための2つの重要なバイアスを識別する: ラベルなしトレーニングデータにおける新しいカテゴリの導入から理論的バイアスアライジング、および顔表情データの不均衡ときめ細かい性質から実践バイアスアライジング。
これらの課題に対処するために、暗黙的および明示的な偏りを両立させる敵のアプローチであるFER-GCDを提案する。
暗黙の偏りの過程において、理論バイアスの上界を推定するために用いられる新しい計量であるF-discrepancyを考案し、モデルがこの上界を敵の訓練によって最小化するのに役立つ。
明示的なデバイアス処理は、さらに機能ジェネレータと分類器を最適化し、実用的なバイアスを減らす。
GCDをベースとしたFERデータセットの大規模な実験により、私たちのFER-GCDフレームワークは、古いカテゴリと新しいカテゴリの両方の精度を大幅に向上し、ベースラインよりも平均9.8%向上し、最先端の手法よりも優れています。
関連論文リスト
- Exploring Facial Expression Recognition through Semi-Supervised Pretraining and Temporal Modeling [8.809586885539002]
本稿では,第6回ABAW(Affective Behavior Analysis in-the-Wild)コンペティションについて述べる。
第6回ABAWコンペティションでは,オフィシャル検証セットにおいて優れた結果を得た。
論文 参考訳(メタデータ) (2024-03-18T16:36:54Z) - Generalized Categories Discovery for Long-tailed Recognition [8.69033435074757]
一般化されたクラスディスカバリは、既知のカテゴリと未知のカテゴリの両方をラベルのないデータセットから識別する上で重要な役割を果たす。
我々の研究は、長い尾の一般カテゴリー発見(Long-tailed GCD)パラダイムに焦点をあてて、この断線を橋渡ししようと試みています。
長い尾を持つGCDがもたらす特異な課題に対応するため、2つの戦略正則化に固定された頑健な方法論を提案する。
論文 参考訳(メタデータ) (2023-12-04T09:21:30Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Toward Fair Facial Expression Recognition with Improved Distribution
Alignment [19.442685015494316]
本稿では,表情認識(FER)モデルにおけるバイアスを軽減する新しい手法を提案する。
本手法は、FERモデルによる埋め込みにおいて、性別、年齢、人種などの機密属性情報を低減することを目的としている。
ferモデルにおいて、魅力の概念を重要な感度属性として分析し、FERモデルがより魅力的な顔に対するバイアスを実際に示できることを実証する。
論文 参考訳(メタデータ) (2023-06-11T14:59:20Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - An Operational Perspective to Fairness Interventions: Where and How to
Intervene [9.833760837977222]
フェアネス介入の評価と文脈化のための包括的枠組みを提案する。
予測パリティに関するケーススタディで、我々のフレームワークを実証する。
グループデータを使わずに予測パリティを実現することは困難である。
論文 参考訳(メタデータ) (2023-02-03T07:04:33Z) - Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face
Recognition [107.58227666024791]
顔認識システムは、法執行を含む安全クリティカルなアプリケーションに広くデプロイされている。
彼らは、性別や人種など、様々な社会的デデノグラフィー次元に偏見を示す。
バイアス軽減に関するこれまでの研究は、主にトレーニングデータの事前処理に重点を置いていた。
論文 参考訳(メタデータ) (2022-10-18T15:46:05Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。