論文の概要: Learning to Discover Generalized Facial Expressions
- arxiv url: http://arxiv.org/abs/2409.20098v1
- Date: Mon, 30 Sep 2024 08:50:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 18:56:57.480105
- Title: Learning to Discover Generalized Facial Expressions
- Title(参考訳): 表情の一般化を学習する
- Authors: Tingzhang Luo, Yichao Liu, Yuanyuan Liu, Andi Zhang, Xin Wang, Chang Tang, Zhe Chen,
- Abstract要約: 表情カテゴリー発見(FECD)について紹介する。
FECDは、オープンワールドの表情認識(O-FER)領域における新しい課題である
- 参考スコア(独自算出の注目度): 16.44358221618312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Facial Expression Category Discovery (FECD), a novel task in the domain of open-world facial expression recognition (O-FER). While Generalized Category Discovery (GCD) has been explored in natural image datasets, applying it to facial expressions presents unique challenges. Specifically, we identify two key biases to better understand these challenges: Theoretical Bias-arising from the introduction of new categories in unlabeled training data, and Practical Bias-stemming from the imbalanced and fine-grained nature of facial expression data. To address these challenges, we propose FER-GCD, an adversarial approach that integrates both implicit and explicit debiasing components. In the implicit debiasing process, we devise F-discrepancy, a novel metric used to estimate the upper bound of Theoretical Bias, helping the model minimize this upper bound through adversarial training. The explicit debiasing process further optimizes the feature generator and classifier to reduce Practical Bias. Extensive experiments on GCD-based FER datasets demonstrate that our FER-GCD framework significantly improves accuracy on both old and new categories, achieving an average improvement of 9.8% over the baseline and outperforming state-of-the-art methods.
- Abstract(参考訳): オープンワールド表情認識(O-FER)分野における新しい課題である表情カテゴリー発見(FECD)を紹介した。
Generalized Category Discovery (GCD)は、自然な画像データセットで研究されているが、表情に適用することはユニークな課題である。
具体的には、これらの課題をよりよく理解するための2つの重要なバイアスを識別する: ラベルなしトレーニングデータにおける新しいカテゴリの導入から理論的バイアスアライジング、および顔表情データの不均衡ときめ細かい性質から実践バイアスアライジング。
これらの課題に対処するために、暗黙的および明示的な偏りを両立させる敵のアプローチであるFER-GCDを提案する。
暗黙の偏りの過程において、理論バイアスの上界を推定するために用いられる新しい計量であるF-discrepancyを考案し、モデルがこの上界を敵の訓練によって最小化するのに役立つ。
明示的なデバイアス処理は、さらに機能ジェネレータと分類器を最適化し、実用的なバイアスを減らす。
GCDをベースとしたFERデータセットの大規模な実験により、私たちのFER-GCDフレームワークは、古いカテゴリと新しいカテゴリの両方の精度を大幅に向上し、ベースラインよりも平均9.8%向上し、最先端の手法よりも優れています。
関連論文リスト
- FineFACE: Fair Facial Attribute Classification Leveraging Fine-grained Features [3.9440964696313485]
自動的な顔属性分類アルゴリズムでは、人口統計バイアスの存在が強調されている。
既存のバイアス緩和技術は、一般に人口統計学的なアノテーションを必要とし、しばしば公正性と正確性の間のトレードオフを得る。
そこで本稿では, 顔属性の公平な分類法を, きめ細かな分類問題とみなして提案する。
論文 参考訳(メタデータ) (2024-08-29T20:08:22Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) は、部分的にラベル付けされたデータを自動でクラスタリングすることを目的としている。
ラベル付きデータには、ラベル付きデータの既知のカテゴリだけでなく、新しいカテゴリのインスタンスも含まれている。
GCDの効果的な方法の1つは、ラベルなしデータの識別表現を学習するために自己教師付き学習を適用することである。
本稿では,クラスタリングの精度を効果的に向上する動的概念コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-30T14:04:39Z) - Dual Contrastive Learning for General Face Forgery Detection [64.41970626226221]
本稿では,正と負のペアデータを構成するDCL (Dual Contrastive Learning) という新しい顔偽造検出フレームワークを提案する。
本研究は, 事例内コントラスト学習(Intra-ICL)において, 偽造顔における局所的内容の不整合に焦点をあてる。
論文 参考訳(メタデータ) (2021-12-27T05:44:40Z) - Understanding and Mitigating Annotation Bias in Facial Expression
Recognition [3.325054486984015]
現存する多くの著作は、人為的なアノテーションは金本位制であり、偏見のないものと見なすことができると仮定している。
顔の表情認識に焦点をあて、実験室で制御されたデータセットと現場のデータセットのラベルバイアスを比較する。
本稿では,顔動作単位(AU)を活用し,三重項損失を対象関数に組み込むAU校正顔表情認識フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-19T05:28:07Z) - Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic
Segmentation [25.070027668717422]
一般化ゼロショットセマンティックセマンティックセグメンテーション(GZS3)は、見えないクラスと見えないクラスのピクセルワイズセマンティックラベルを予測する。
ほとんどのGZS3メソッドは、対応するセマンティックなクラスから見えないクラスの視覚的特徴を合成する生成的アプローチを採用している。
統一されたフレームワークにおける制限に対処するための差別的アプローチを提案する。
論文 参考訳(メタデータ) (2021-08-14T13:33:58Z) - DecAug: Out-of-Distribution Generalization via Decomposed Feature
Representation and Semantic Augmentation [29.18840132995509]
深層学習は、しばしば分布外(OoD)一般化に苦しむ。
OoD一般化のための新しい分解特徴表現および意味的拡張アプローチであるDecAugを提案する。
DecAugは、さまざまなOoDデータセットの他の最先端のメソッドよりも優れています。
論文 参考訳(メタデータ) (2020-12-17T03:46:09Z) - Mitigating Face Recognition Bias via Group Adaptive Classifier [53.15616844833305]
この研究は、全てのグループの顔がより平等に表現できる公正な顔表現を学ぶことを目的としている。
我々の研究は、競争精度を維持しながら、人口集団間での顔認識バイアスを軽減することができる。
論文 参考訳(メタデータ) (2020-06-13T06:43:37Z) - Enhancing Facial Data Diversity with Style-based Face Aging [59.984134070735934]
特に、顔データセットは、通常、性別、年齢、人種などの属性の観点からバイアスされる。
本稿では, 細粒度の老化パターンをキャプチャするデータ拡張のための, 生成スタイルに基づく新しいアーキテクチャを提案する。
提案手法は, 年齢移動のための最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-06T21:53:44Z) - Domain-aware Visual Bias Eliminating for Generalized Zero-Shot Learning [150.42959029611657]
ドメイン対応ビジュアルバイアス除去(DVBE)ネットワークは2つの相補的な視覚表現を構成する。
目に見えない画像に対しては、最適なセマンティック・視覚アライメントアーキテクチャを自動で検索する。
論文 参考訳(メタデータ) (2020-03-30T08:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。