論文の概要: Constraint Guided Model Quantization of Neural Networks
- arxiv url: http://arxiv.org/abs/2409.20138v1
- Date: Mon, 30 Sep 2024 09:41:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 13:17:59.020914
- Title: Constraint Guided Model Quantization of Neural Networks
- Title(参考訳): ニューラルネットワークの制約付きモデル量子化
- Authors: Quinten Van Baelen, Peter Karsmakers,
- Abstract要約: Constraint Guided Model Quantization (CGMQ) は、計算資源の上限を使い、ニューラルネットワークのパラメータのビット幅を削減する量子化対応トレーニングアルゴリズムである。
MNISTでは、CGMQの性能が最先端の量子化対応トレーニングアルゴリズムと競合していることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deploying neural networks on the edge has become increasingly important as deep learning is being applied in an increasing amount of applications. The devices on the edge are typically characterised as having small computational resources as large computational resources results in a higher energy consumption, which is impractical for these devices. To reduce the complexity of neural networks a wide range of quantization methods have been proposed in recent years. This work proposes Constraint Guided Model Quantization (CGMQ), which is a quantization aware training algorithm that uses an upper bound on the computational resources and reduces the bit-widths of the parameters of the neural network. CGMQ does not require the tuning of a hyperparameter to result in a mixed precision neural network that satisfies the predefined computational cost constraint, while prior work does. It is shown on MNIST that the performance of CGMQ is competitive with state-of-the-art quantization aware training algorithms, while guaranteeing the satisfaction of the cost constraint.
- Abstract(参考訳): ディープラーニングがアプリケーションの増加に応用されているため、エッジにニューラルネットワークをデプロイすることがますます重要になっている。
エッジ上のデバイスは通常、大きな計算資源がより高いエネルギー消費をもたらすため、小さな計算資源を持つものとして特徴づけられる。
ニューラルネットワークの複雑さを軽減するため、近年、幅広い量子化手法が提案されている。
本研究では,計算資源の上限値を用いてニューラルネットワークのパラメータのビット幅を削減する量子化対応学習アルゴリズムであるConstraint Guided Model Quantization (CGMQ)を提案する。
CGMQは、事前定義された計算コスト制約を満たす混合精度ニューラルネットワークを実現するために、ハイパーパラメータのチューニングを必要としない。
MNISTでは、CGMQの性能は、コスト制約の満足度を保証しつつ、最先端の量子化対応トレーニングアルゴリズムと競合していることが示されている。
関連論文リスト
- Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
量子コンピューティングネットワークは、大規模な生成AI計算タスクと高度な量子アルゴリズムを実行する。
量子コンピューティングネットワークにおける効率的なリソース割り当ては、量子ビットの可変性とネットワークの複雑さのために重要な課題である。
我々は、生成学習から量子機械学習まで、最先端強化学習(RL)アルゴリズムを導入し、最適な量子リソース割り当てを行う。
論文 参考訳(メタデータ) (2024-01-13T17:16:38Z) - Low Precision Quantization-aware Training in Spiking Neural Networks
with Differentiable Quantization Function [0.5046831208137847]
この研究は、量子化されたニューラルネットワークの最近の進歩とスパイクニューラルネットワークのギャップを埋めることを目的としている。
これは、シグモイド関数の線形結合として表される量子化関数の性能に関する広範な研究を示す。
提案した量子化関数は、4つの人気のあるベンチマーク上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-05-30T09:42:05Z) - CoNLoCNN: Exploiting Correlation and Non-Uniform Quantization for
Energy-Efficient Low-precision Deep Convolutional Neural Networks [13.520972975766313]
本研究では、重みの非一様量子化を利用して、エネルギー効率の低い深部畳み込みニューラルネットワーク推論を可能にする枠組みを提案する。
また、重みのビット幅を圧縮する新しいデータ表現形式Encoded Low-Precision Binary Signed Digitを提案する。
論文 参考訳(メタデータ) (2022-07-31T01:34:56Z) - Low-bit Shift Network for End-to-End Spoken Language Understanding [7.851607739211987]
本稿では,連続パラメータを低ビットの2値に量子化する2乗量子化法を提案する。
これにより、高価な乗算演算を除去し、低ビット重みを使用すれば計算の複雑さを低減できる。
論文 参考訳(メタデータ) (2022-07-15T14:34:22Z) - CEG4N: Counter-Example Guided Neural Network Quantization Refinement [2.722899166098862]
我々は,カウンタ・サンプル・ガイド付きニューラルネットワーク量子化リファインメント(CEG4N)を提案する。
この手法は探索に基づく量子化と等価検証を組み合わせたものである。
最先端技術よりも最大72%精度のモデルを作成します。
論文 参考訳(メタデータ) (2022-07-09T09:25:45Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - A White Paper on Neural Network Quantization [20.542729144379223]
本稿では,量子化ノイズがネットワークの性能に与える影響を緩和する最新アルゴリズムを提案する。
我々は,ポストトレーニング量子化(PTQ)と量子化アウェア・トレーニング(QAT)の2つのアルゴリズムについて考察する。
論文 参考訳(メタデータ) (2021-06-15T17:12:42Z) - A Survey of Quantization Methods for Efficient Neural Network Inference [75.55159744950859]
量子化は、必要なビット数を最小限に抑えるために、固定された離散数の集合に連続実数値を分散する問題である。
近年、コンピュータビジョン、自然言語処理、関連分野でのニューラルネットワークモデルの顕著な性能のために最前線に達しています。
浮動小数点表現から4ビット以下の低精度固定整数値への移行は、メモリフットプリントとレイテンシを16倍削減する可能性を秘めている。
論文 参考訳(メタデータ) (2021-03-25T06:57:11Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
超低遅延アプリケーションのためのニューラルネットワークのトレーニング中の分級と量子化の相互作用を研究します。
量子化アウェアプルーニングは,タスクのプルーニングや量子化のみよりも計算効率のよいモデルであることが判明した。
論文 参考訳(メタデータ) (2021-02-22T19:00:05Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。