Annotation-Free Curb Detection Leveraging Altitude Difference Image
- URL: http://arxiv.org/abs/2409.20171v1
- Date: Mon, 30 Sep 2024 10:29:41 GMT
- Title: Annotation-Free Curb Detection Leveraging Altitude Difference Image
- Authors: Fulong Ma, Peng Hou, Yuxuan Liu, Ming Liu, Jun Ma,
- Abstract summary: Road curbs are essential for ensuring the safety of autonomous vehicles.
Current methods for detecting curbs rely on camera imagery or LiDAR point clouds.
This work proposes an annotation-free curb detection method leveraging Altitude Difference Image (ADI)
- Score: 9.799565515089617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Road curbs are considered as one of the crucial and ubiquitous traffic features, which are essential for ensuring the safety of autonomous vehicles. Current methods for detecting curbs primarily rely on camera imagery or LiDAR point clouds. Image-based methods are vulnerable to fluctuations in lighting conditions and exhibit poor robustness, while methods based on point clouds circumvent the issues associated with lighting variations. However, it is the typical case that significant processing delays are encountered due to the voluminous amount of 3D points contained in each frame of the point cloud data. Furthermore, the inherently unstructured characteristics of point clouds poses challenges for integrating the latest deep learning advancements into point cloud data applications. To address these issues, this work proposes an annotation-free curb detection method leveraging Altitude Difference Image (ADI), which effectively mitigates the aforementioned challenges. Given that methods based on deep learning generally demand extensive, manually annotated datasets, which are both expensive and labor-intensive to create, we present an Automatic Curb Annotator (ACA) module. This module utilizes a deterministic curb detection algorithm to automatically generate a vast quantity of training data. Consequently, it facilitates the training of the curb detection model without necessitating any manual annotation of data. Finally, by incorporating a post-processing module, we manage to achieve state-of-the-art results on the KITTI 3D curb dataset with considerably reduced processing delays compared to existing methods, which underscores the effectiveness of our approach in curb detection tasks.
Related papers
- Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - CurbNet: Curb Detection Framework Based on LiDAR Point Cloud Segmentation [7.451629109566809]
This paper introduces CurbNet, a novel framework for curb detection utilizing point cloud segmentation.
We have developed the 3D-Curb dataset based on Semantic KITTI, currently the largest and most diverse collection of curb point clouds.
To tackle the challenges posed by the uneven distribution of curb features on the xy-plane and their dependence on high-frequency features along the z-axis, we introduce the Multi-Scale and Channel Attention (MSCA) module.
arXiv Detail & Related papers (2024-03-25T14:13:09Z) - 3D Object Detection and High-Resolution Traffic Parameters Extraction
Using Low-Resolution LiDAR Data [14.142956899468922]
This study proposes an innovative framework that alleviates the need for multiple LiDAR systems and simplifies the laborious 3D annotation process.
Using the 2D bounding box detection and extracted height information, this study is able to generate 3D bounding boxes automatically without human intervention.
arXiv Detail & Related papers (2024-01-13T01:22:20Z) - TimePillars: Temporally-Recurrent 3D LiDAR Object Detection [8.955064958311517]
TimePillars is a temporally-recurrent object detection pipeline.
It exploits the pillar representation of LiDAR data across time.
We show how basic building blocks are enough to achieve robust and efficient results.
arXiv Detail & Related papers (2023-12-22T10:25:27Z) - LiDAR-based curb detection for ground truth annotation in automated
driving validation [2.954315548942922]
This paper presents a method for detecting 3D curbs in a sequence of point clouds captured from a LiDAR sensor.
A sequence-level processing step estimates the 3D curbs in the reconstructed point cloud using the odometry of the vehicle.
These detections can be used as pre-annotations in labelling pipelines to efficiently generate curb-related ground truth data.
arXiv Detail & Related papers (2023-12-01T12:15:09Z) - Refining the ONCE Benchmark with Hyperparameter Tuning [45.55545585587993]
This work focuses on the evaluation of semi-supervised learning approaches for point cloud data.
Data annotation is of paramount importance in the context of LiDAR applications.
We show that improvements from previous semi-supervised methods may not be as profound as previously thought.
arXiv Detail & Related papers (2023-11-10T13:39:07Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
We propose an architecture and loss formulation to improve the accuracy of local lane graph estimates.
The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers.
We show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods.
arXiv Detail & Related papers (2023-07-20T15:21:28Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
We formulate the problem as estimation of point-wise trajectories (i.e., smooth curves)
We propose IDEA-Net, an end-to-end deep learning framework, which disentangles the problem under the assistance of the explicitly learned temporal consistency.
We demonstrate the effectiveness of our method on various point cloud sequences and observe large improvement over state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2022-03-22T10:14:08Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
Mesh and Point Cloud simplification methods aim to reduce the complexity of 3D models while retaining visual quality and relevant salient features.
We propose a fast point cloud simplification method by learning to sample salient points.
The proposed method relies on a graph neural network architecture trained to select an arbitrary, user-defined, number of points from the input space and to re-arrange their positions so as to minimize the visual perception error.
arXiv Detail & Related papers (2021-09-30T10:23:55Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
We present a method to infer a dense depth map from a color image and associated sparse depth measurements.
We show that regularization and co-visibility are related via the fitness of the model to data and can be unified into a single framework.
arXiv Detail & Related papers (2021-06-06T02:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.