CurbNet: Curb Detection Framework Based on LiDAR Point Cloud Segmentation
- URL: http://arxiv.org/abs/2403.16794v2
- Date: Thu, 30 May 2024 07:53:21 GMT
- Title: CurbNet: Curb Detection Framework Based on LiDAR Point Cloud Segmentation
- Authors: Guoyang Zhao, Fulong Ma, Weiqing Qi, Yuxuan Liu, Ming Liu,
- Abstract summary: This paper introduces CurbNet, a novel framework for curb detection utilizing point cloud segmentation.
We have developed the 3D-Curb dataset based on Semantic KITTI, currently the largest and most diverse collection of curb point clouds.
To tackle the challenges posed by the uneven distribution of curb features on the xy-plane and their dependence on high-frequency features along the z-axis, we introduce the Multi-Scale and Channel Attention (MSCA) module.
- Score: 7.451629109566809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Curb detection is a crucial function in intelligent driving, essential for determining drivable areas on the road. However, the complexity of road environments makes curb detection challenging. This paper introduces CurbNet, a novel framework for curb detection utilizing point cloud segmentation. To address the lack of comprehensive curb datasets with 3D annotations, we have developed the 3D-Curb dataset based on SemanticKITTI, currently the largest and most diverse collection of curb point clouds. Recognizing that the primary characteristic of curbs is height variation, our approach leverages spatially rich 3D point clouds for training. To tackle the challenges posed by the uneven distribution of curb features on the xy-plane and their dependence on high-frequency features along the z-axis, we introduce the Multi-Scale and Channel Attention (MSCA) module, a customized solution designed to optimize detection performance. Additionally, we propose an adaptive weighted loss function group specifically formulated to counteract the imbalance in the distribution of curb point clouds relative to other categories. Extensive experiments conducted on 2 major datasets demonstrate that our method surpasses existing benchmarks set by leading curb detection and point cloud segmentation models. Through the post-processing refinement of the detection results, we have significantly reduced noise in curb detection, thereby improving precision by 4.5 points. Similarly, our tolerance experiments also achieved state-of-the-art results. Furthermore, real-world experiments and dataset analyses mutually validate each other, reinforcing CurbNet's superior detection capability and robust generalizability. The project website is available at: https://github.com/guoyangzhao/CurbNet/.
Related papers
- Annotation-Free Curb Detection Leveraging Altitude Difference Image [9.799565515089617]
Road curbs are essential for ensuring the safety of autonomous vehicles.
Current methods for detecting curbs rely on camera imagery or LiDAR point clouds.
This work proposes an annotation-free curb detection method leveraging Altitude Difference Image (ADI)
arXiv Detail & Related papers (2024-09-30T10:29:41Z) - FASTC: A Fast Attentional Framework for Semantic Traversability Classification Using Point Cloud [7.711666704468952]
We address the problem of traversability assessment using point clouds.
We propose a pillar feature extraction module that utilizes PointNet to capture features from point clouds organized in vertical volume.
We then propose a newtemporal attention module to fuse multi-frame information, which can properly handle the varying density problem of LIDAR point clouds.
arXiv Detail & Related papers (2024-06-24T12:01:55Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - A Unified BEV Model for Joint Learning of 3D Local Features and Overlap
Estimation [12.499361832561634]
We present a unified bird's-eye view (BEV) model for jointly learning of 3D local features and overlap estimation.
Our method significantly outperforms existing methods on overlap prediction, especially in scenes with small overlaps.
arXiv Detail & Related papers (2023-02-28T12:01:16Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
We propose a novel DAT (textbfDual textbfAdaptive textbfTransformations) model for weakly supervised point cloud segmentation.
We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets.
arXiv Detail & Related papers (2022-07-19T05:43:14Z) - Structure Aware and Class Balanced 3D Object Detection on nuScenes
Dataset [0.0]
NuTonomy's nuScenes dataset greatly extends commonly used datasets such as KITTI.
The localization precision of this model is affected by the loss of spatial information in the downscaled feature maps.
We propose to enhance the performance of the CBGS model by designing an auxiliary network, that makes full use of the structure information of the 3D point cloud.
arXiv Detail & Related papers (2022-05-25T06:18:49Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
We formulate the problem as estimation of point-wise trajectories (i.e., smooth curves)
We propose IDEA-Net, an end-to-end deep learning framework, which disentangles the problem under the assistance of the explicitly learned temporal consistency.
We demonstrate the effectiveness of our method on various point cloud sequences and observe large improvement over state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2022-03-22T10:14:08Z) - 3D Object Detection Combining Semantic and Geometric Features from Point
Clouds [19.127930862527666]
We propose a novel end-to-end two-stage 3D object detector named SGNet for point clouds scenes.
The VTPM is a Voxel-Point-Based Module that finally implements 3D object detection in point space.
As of September 19, 2021, for KITTI dataset, SGNet ranked 1st in 3D and BEV detection on cyclists with easy difficulty level, and 2nd in the 3D detection of moderate cyclists.
arXiv Detail & Related papers (2021-10-10T04:43:27Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
arXiv Detail & Related papers (2020-07-16T18:27:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.