論文の概要: Classroom-Inspired Multi-Mentor Distillation with Adaptive Learning Strategies
- arxiv url: http://arxiv.org/abs/2409.20237v1
- Date: Mon, 30 Sep 2024 12:20:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 12:56:53.656031
- Title: Classroom-Inspired Multi-Mentor Distillation with Adaptive Learning Strategies
- Title(参考訳): 適応学習戦略を用いた教室型マルチメンター蒸留
- Authors: Shalini Sarode, Muhammad Saif Ullah Khan, Tahira Shehzadi, Didier Stricker, Muhammad Zeshan Afzal,
- Abstract要約: ClassroomKDは、教室環境にインスパイアされた新しい多面的知識蒸留フレームワークである。
このフレームワークは、各データサンプルの有効性に基づいて、多様なメンターの指導戦略を動的に選択し、適応する。
その結果,メンターの選択と指導に対する動的かつ適応的なアプローチは,より効果的な知識伝達につながることがわかった。
- 参考スコア(独自算出の注目度): 11.225067563482169
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose ClassroomKD, a novel multi-mentor knowledge distillation framework inspired by classroom environments to enhance knowledge transfer between student and multiple mentors. Unlike traditional methods that rely on fixed mentor-student relationships, our framework dynamically selects and adapts the teaching strategies of diverse mentors based on their effectiveness for each data sample. ClassroomKD comprises two main modules: the Knowledge Filtering (KF) Module and the Mentoring Module. The KF Module dynamically ranks mentors based on their performance for each input, activating only high-quality mentors to minimize error accumulation and prevent information loss. The Mentoring Module adjusts the distillation strategy by tuning each mentor's influence according to the performance gap between the student and mentors, effectively modulating the learning pace. Extensive experiments on image classification (CIFAR-100 and ImageNet) and 2D human pose estimation (COCO Keypoints and MPII Human Pose) demonstrate that ClassroomKD significantly outperforms existing knowledge distillation methods. Our results highlight that a dynamic and adaptive approach to mentor selection and guidance leads to more effective knowledge transfer, paving the way for enhanced model performance through distillation.
- Abstract(参考訳): 教室環境にインスパイアされた新しい多面的知識蒸留フレームワークであるClassroomKDを提案する。
固定的なメンター-学生関係に依存する従来の手法とは異なり、我々のフレームワークは、データサンプル毎の有効性に基づいて、多様なメンターの指導戦略を動的に選択し、適応する。
ClassroomKDは、知識フィルタリング(KF)モジュールとメンタリングモジュールの2つの主要なモジュールから構成されている。
KFモジュールは、各入力のパフォーマンスに基づいてメンターを動的にランク付けし、エラーの蓄積を最小限に抑え、情報損失を防ぐために高品質のメンターのみを活性化する。
メンタリングモジュールは、生徒とメンタのパフォーマンスギャップに応じて各メンタの影響を調整し、学習ペースを効果的に調整することで蒸留戦略を調整する。
画像分類(CIFAR-100とImageNet)と2次元人間のポーズ推定(COCOキーポイントとMPIIヒューマンポース)に関する大規模な実験は、ClassroomKDが既存の知識蒸留法を著しく上回ることを示した。
以上の結果から,メンタの選択と指導に対する動的適応的アプローチが,蒸留によるモデル性能向上の道を開くことにより,より効果的な知識伝達につながることが示唆された。
関連論文リスト
- Relative Difficulty Distillation for Semantic Segmentation [54.76143187709987]
我々は,Relative Difficulty Distillation (RDD) というセマンティックセグメンテーションのための画素レベルのKDパラダイムを提案する。
RDDにより、教師ネットワークは、追加の最適化目標を伴わずに、学習焦点に対する効果的なガイダンスを提供することができる。
我々の研究は、RDDが既存のKDメソッドと統合して、上位パフォーマンスバウンダリを改善できることを示します。
論文 参考訳(メタデータ) (2024-07-04T08:08:25Z) - Leveraging Different Learning Styles for Improved Knowledge Distillation
in Biomedical Imaging [0.9208007322096533]
我々の研究は知識多様化の概念を活用して、知識蒸留(KD)や相互学習(ML)といったモデル圧縮技術の性能を向上させる。
我々は,教師から学生(KD)への知識伝達を可能にすると同時に,学生(ML)間の協調学習を促進する統一的な枠組みで,一教師と二学生のネットワークを利用する。
教師が学生ネットワークと予測や特徴表現の形で同じ知識を共有する従来の手法とは異なり,提案手法では,教師の予測と特徴マップの学習により,より多様化した戦略を採用する。
論文 参考訳(メタデータ) (2022-12-06T12:40:45Z) - Hint-dynamic Knowledge Distillation [30.40008256306688]
HKDと呼ばれるHint-dynamic Knowledge Distillationは、動的スキームで教師のヒントから知識を抽出する。
メタウェイトネットワークを導入し、知識ヒントに関するインスタンス単位の重み係数を生成する。
CIFAR-100とTiny-ImageNetの標準ベンチマークの実験では、提案したHKDが知識蒸留タスクの効果を高めることが示されている。
論文 参考訳(メタデータ) (2022-11-30T15:03:53Z) - Weakly Supervised Semantic Segmentation via Alternative Self-Dual
Teaching [82.71578668091914]
本稿では,分類とマスク・リファインメント・コンポーネントを統合された深層モデルに組み込む,コンパクトな学習フレームワークを確立する。
本稿では,高品質な知識相互作用を促進するために,新たな自己双対学習(ASDT)機構を提案する。
論文 参考訳(メタデータ) (2021-12-17T11:56:56Z) - Semi-Online Knowledge Distillation [2.373824287636486]
従来の知識蒸留(KD)は、大規模で訓練済みの教師ネットワークから小さな学生ネットワークへ知識を伝達することである。
学生ネットワークの協調学習を支援するために,Deep mutual learning (DML) が提案されている。
学生と教師のパフォーマンスを効果的に向上する半オンライン知識蒸留法(SOKD)を提案する。
論文 参考訳(メタデータ) (2021-11-23T09:44:58Z) - Augmenting Knowledge Distillation With Peer-To-Peer Mutual Learning For
Model Compression [2.538209532048867]
相互学習(ML)は、複数の単純な学生ネットワークが知識を共有することで恩恵を受ける、代替戦略を提供する。
そこで本研究では,KDとMLを併用して,より優れたパフォーマンスを実現する,単教師多学生フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-21T09:59:31Z) - Multi-head Knowledge Distillation for Model Compression [65.58705111863814]
そこで本研究では,中間層における特徴マッチングのための補助分類器を用いた簡易実装法を提案する。
提案手法は,本論文で提示された従来手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-05T00:49:14Z) - Knowledge Distillation Beyond Model Compression [13.041607703862724]
知識蒸留(KD)は、より大規模な事前訓練されたモデルや(教師)モデルのアンサンブルの監督の下で、コンパクトモデル(学生)を訓練する効果的なモデル圧縮技術として一般的に考えられている。
本研究では,9つの異なるKD手法について広範な研究を行い,知識の獲得と伝達に関する幅広いアプローチについて述べる。
論文 参考訳(メタデータ) (2020-07-03T19:54:04Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
教師モデルの様々な層を流れる情報の流れをモデル化して機能する新しいKD手法を提案する。
提案手法は, トレーニング過程の異なる段階において, 適切な監督手法を用いて, 上記の制限を克服することができる。
論文 参考訳(メタデータ) (2020-05-02T06:56:56Z) - Guided Variational Autoencoder for Disentanglement Learning [79.02010588207416]
本稿では,潜在表現非絡み合い学習を行うことで,制御可能な生成モデルを学習できるアルゴリズム,Guided-VAEを提案する。
我々は、ガイド-VAEにおける教師なし戦略と教師なし戦略を設計し、バニラVAE上でのモデリングと制御能力の強化を観察する。
論文 参考訳(メタデータ) (2020-04-02T20:49:15Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
我々は,LFME(Learning From Multiple Experts)と呼ばれる自己評価型知識蒸留フレームワークを提案する。
提案するLFMEフレームワークは,複数の'Experts'からの知識を集約して,統一された学生モデルを学ぶ。
提案手法は,最先端の手法に比べて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-01-06T12:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。