Classroom-Inspired Multi-Mentor Distillation with Adaptive Learning Strategies
- URL: http://arxiv.org/abs/2409.20237v1
- Date: Mon, 30 Sep 2024 12:20:07 GMT
- Title: Classroom-Inspired Multi-Mentor Distillation with Adaptive Learning Strategies
- Authors: Shalini Sarode, Muhammad Saif Ullah Khan, Tahira Shehzadi, Didier Stricker, Muhammad Zeshan Afzal,
- Abstract summary: ClassroomKD is a novel multi-mentor knowledge distillation framework inspired by classroom environments.
The framework dynamically selects and adapts the teaching strategies of diverse mentors based on their effectiveness for each data sample.
Our results highlight that a dynamic and adaptive approach to mentor selection and guidance leads to more effective knowledge transfer.
- Score: 11.225067563482169
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose ClassroomKD, a novel multi-mentor knowledge distillation framework inspired by classroom environments to enhance knowledge transfer between student and multiple mentors. Unlike traditional methods that rely on fixed mentor-student relationships, our framework dynamically selects and adapts the teaching strategies of diverse mentors based on their effectiveness for each data sample. ClassroomKD comprises two main modules: the Knowledge Filtering (KF) Module and the Mentoring Module. The KF Module dynamically ranks mentors based on their performance for each input, activating only high-quality mentors to minimize error accumulation and prevent information loss. The Mentoring Module adjusts the distillation strategy by tuning each mentor's influence according to the performance gap between the student and mentors, effectively modulating the learning pace. Extensive experiments on image classification (CIFAR-100 and ImageNet) and 2D human pose estimation (COCO Keypoints and MPII Human Pose) demonstrate that ClassroomKD significantly outperforms existing knowledge distillation methods. Our results highlight that a dynamic and adaptive approach to mentor selection and guidance leads to more effective knowledge transfer, paving the way for enhanced model performance through distillation.
Related papers
- Adaptive Explicit Knowledge Transfer for Knowledge Distillation [17.739979156009696]
We show that the performance of logit-based knowledge distillation can be improved by effectively delivering the probability distribution for the non-target classes from the teacher model.
We propose a new loss that enables the student to learn explicit knowledge along with implicit knowledge in an adaptive manner.
Experimental results demonstrate that the proposed method, called adaptive explicit knowledge transfer (AEKT) method, achieves improved performance compared to the state-of-the-art KD methods.
arXiv Detail & Related papers (2024-09-03T07:42:59Z) - LAKD-Activation Mapping Distillation Based on Local Learning [12.230042188890838]
This paper proposes a novel knowledge distillation framework, Local Attention Knowledge Distillation (LAKD)
LAKD more efficiently utilizes the distilled information from teacher networks, achieving higher interpretability and competitive performance.
We conducted experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets, and the results show that our LAKD method significantly outperforms existing methods.
arXiv Detail & Related papers (2024-08-21T09:43:27Z) - Relative Difficulty Distillation for Semantic Segmentation [54.76143187709987]
We propose a pixel-level KD paradigm for semantic segmentation named Relative Difficulty Distillation (RDD)
RDD allows the teacher network to provide effective guidance on learning focus without additional optimization goals.
Our research showcases that RDD can integrate with existing KD methods to improve their upper performance bound.
arXiv Detail & Related papers (2024-07-04T08:08:25Z) - Leveraging Different Learning Styles for Improved Knowledge Distillation
in Biomedical Imaging [0.9208007322096533]
Our work endeavors to leverage the concept of knowledge diversification to improve the performance of model compression techniques like Knowledge Distillation (KD) and Mutual Learning (ML)
We use a single-teacher and two-student network in a unified framework that not only allows for the transfer of knowledge from teacher to students (KD) but also encourages collaborative learning between students (ML)
Unlike the conventional approach, where the teacher shares the same knowledge in the form of predictions or feature representations with the student network, our proposed approach employs a more diversified strategy by training one student with predictions and the other with feature maps from the teacher.
arXiv Detail & Related papers (2022-12-06T12:40:45Z) - Weakly Supervised Semantic Segmentation via Alternative Self-Dual
Teaching [82.71578668091914]
This paper establishes a compact learning framework that embeds the classification and mask-refinement components into a unified deep model.
We propose a novel alternative self-dual teaching (ASDT) mechanism to encourage high-quality knowledge interaction.
arXiv Detail & Related papers (2021-12-17T11:56:56Z) - Augmenting Knowledge Distillation With Peer-To-Peer Mutual Learning For
Model Compression [2.538209532048867]
Mutual Learning (ML) provides an alternative strategy where multiple simple student networks benefit from sharing knowledge.
We propose a single-teacher, multi-student framework that leverages both KD and ML to achieve better performance.
arXiv Detail & Related papers (2021-10-21T09:59:31Z) - Multi-head Knowledge Distillation for Model Compression [65.58705111863814]
We propose a simple-to-implement method using auxiliary classifiers at intermediate layers for matching features.
We show that the proposed method outperforms prior relevant approaches presented in the literature.
arXiv Detail & Related papers (2020-12-05T00:49:14Z) - Knowledge Distillation Beyond Model Compression [13.041607703862724]
Knowledge distillation (KD) is commonly deemed as an effective model compression technique in which a compact model (student) is trained under the supervision of a larger pretrained model or ensemble of models (teacher)
In this study, we provide an extensive study on nine different KD methods which covers a broad spectrum of approaches to capture and transfer knowledge.
arXiv Detail & Related papers (2020-07-03T19:54:04Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
We propose a novel KD method that works by modeling the information flow through the various layers of the teacher model.
The proposed method is capable of overcoming the aforementioned limitations by using an appropriate supervision scheme during the different phases of the training process.
arXiv Detail & Related papers (2020-05-02T06:56:56Z) - Guided Variational Autoencoder for Disentanglement Learning [79.02010588207416]
We propose an algorithm, guided variational autoencoder (Guided-VAE), that is able to learn a controllable generative model by performing latent representation disentanglement learning.
We design an unsupervised strategy and a supervised strategy in Guided-VAE and observe enhanced modeling and controlling capability over the vanilla VAE.
arXiv Detail & Related papers (2020-04-02T20:49:15Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
We propose a self-paced knowledge distillation framework, termed Learning From Multiple Experts (LFME)
We refer to these models as 'Experts', and the proposed LFME framework aggregates the knowledge from multiple 'Experts' to learn a unified student model.
We conduct extensive experiments and demonstrate that our method is able to achieve superior performances compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-06T12:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.