What is the Role of Large Language Models in the Evolution of Astronomy Research?
- URL: http://arxiv.org/abs/2409.20252v2
- Date: Tue, 1 Oct 2024 16:34:13 GMT
- Title: What is the Role of Large Language Models in the Evolution of Astronomy Research?
- Authors: Morgan Fouesneau, Ivelina G. Momcheva, Urmila Chadayammuri, Mariia Demianenko, Antoine Dumont, Raphael E. Hviding, K. Angelique Kahle, Nadiia Pulatova, Bhavesh Rajpoot, Marten B. Scheuck, Rhys Seeburger, Dmitry Semenov, Jaime I. VillaseƱor,
- Abstract summary: ChatGPT and other state-of-the-art large language models (LLMs) are rapidly transforming multiple fields.
These models, commonly trained on vast datasets, exhibit human-like text generation capabilities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ChatGPT and other state-of-the-art large language models (LLMs) are rapidly transforming multiple fields, offering powerful tools for a wide range of applications. These models, commonly trained on vast datasets, exhibit human-like text generation capabilities, making them useful for research tasks such as ideation, literature review, coding, drafting, and outreach. We conducted a study involving 13 astronomers at different career stages and research fields to explore LLM applications across diverse tasks over several months and to evaluate their performance in research-related activities. This work was accompanied by an anonymous survey assessing participants' experiences and attitudes towards LLMs. We provide a detailed analysis of the tasks attempted and the survey answers, along with specific output examples. Our findings highlight both the potential and limitations of LLMs in supporting research while also addressing general and research-specific ethical considerations. We conclude with a series of recommendations, emphasizing the need for researchers to complement LLMs with critical thinking and domain expertise, ensuring these tools serve as aids rather than substitutes for rigorous scientific inquiry.
Related papers
- Self-assessment, Exhibition, and Recognition: a Review of Personality in Large Language Models [29.086329448754412]
We present a comprehensive review by categorizing current studies into three research problems: self-assessment, exhibition, and recognition.
Our paper is the first comprehensive survey of up-to-date literature on personality in large language models.
arXiv Detail & Related papers (2024-06-25T15:08:44Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
Large language models (LLMs) have shown remarkable versatility in various generative tasks.
This study focuses on the topic of LLMs assist NLP Researchers.
To our knowledge, this is the first work to provide such a comprehensive analysis.
arXiv Detail & Related papers (2024-06-24T01:30:22Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
Large language models (LLMs) have revolutionized the way text and other modalities of data are handled.
We aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs.
arXiv Detail & Related papers (2024-06-16T08:03:24Z) - Apprentices to Research Assistants: Advancing Research with Large Language Models [0.0]
Large Language Models (LLMs) have emerged as powerful tools in various research domains.
This article examines their potential through a literature review and firsthand experimentation.
arXiv Detail & Related papers (2024-04-09T15:53:06Z) - Materials science in the era of large language models: a perspective [0.0]
Large Language Models (LLMs) have garnered considerable interest due to their impressive capabilities.
This paper argues their ability to handle ambiguous requirements across a range of tasks and disciplines mean they could be a powerful tool to aid researchers.
arXiv Detail & Related papers (2024-03-11T17:34:25Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
Large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence.
This paper delivers a systematic review of the field of LLM-based autonomous agents from a holistic perspective.
We present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering.
arXiv Detail & Related papers (2023-08-22T13:30:37Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - Multi-Task Instruction Tuning of LLaMa for Specific Scenarios: A
Preliminary Study on Writing Assistance [60.40541387785977]
Small foundational models can display remarkable proficiency in tackling diverse tasks when fine-tuned using instruction-driven data.
In this work, we investigate a practical problem setting where the primary focus is on one or a few particular tasks rather than general-purpose instruction following.
Experimental results show that fine-tuning LLaMA on writing instruction data significantly improves its ability on writing tasks.
arXiv Detail & Related papers (2023-05-22T16:56:44Z) - A Bibliometric Review of Large Language Models Research from 2017 to
2023 [1.4190701053683017]
Large language models (LLMs) are language models that have demonstrated outstanding performance across a range of natural language processing (NLP) tasks.
This paper serves as a roadmap for researchers, practitioners, and policymakers to navigate the current landscape of LLMs research.
arXiv Detail & Related papers (2023-04-03T21:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.